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Wireless Sensor Network Localization in Harsh Environments
Using SDP Relaxation

Pouya Mollaebrahim Ghari, Reza Shahbazian, Student Member, IEEE,
and Seyed Ali Ghorashi, Senior Member, IEEE

Abstract—The accuracy of localization in wireless sensor
networks depends on noise level and the presence of nonline
of sight (NLOS) connections. In this letter, we propose a novel
semidefinite programming (SDP) method to improve the accuracy
and to reduce the required time for wireless sensor network local-
ization in harsh environments. In fact, we perturb Edge-based
SDP (ESDP) relaxation and add some constraints to the optimiza-
tion problem in order to make the proposed localization method
robust against large amounts of error in distance measurements.
Simulation results confirm that our proposed method outperforms
others when the majority of connections are NLOS, noise level is
high and it is not possible to distinguish between NLOS and line of
sight (LOS) connections.

Index Terms—Localization, wireless sensor network, semi-
definite programming.

I. INTRODUCTION

N OWADAYS, Wireless Sensor Networks (WSNs) are con-
sidered to provide reliable solutions to a wide variety of

applications. In general, by knowing the location of a node,
more meaningful data may be collected by a WSN. Therefore,
in some applications, localization is a necessity. Although the
Global Positioning System (GPS) can be used to determine the
position of sensors, this could be expensive or even impos-
sible in some cases [1]. In such cases, the location of each
node can be estimated based on the distance measurements
of neighboring nodes. In addition, there are a few nodes with
known positions (called anchors) that can be used to solve the
localization problem.

Localization problem can be described as follows. Here,
we consider a two-dimensional (2D) case whose extension
to higher dimensions is straightforward. There are n sensors
with unknown locations x1, . . . , xn and m anchors whose loca-
tions are denoted by a1, . . . , am . We also denote the Euclidean
distance between a pair of sensors xi and x j by ds,i j , and
it is defined only when the distance between them is less
than a specific radio range. Similarly, for a sensor x j and an
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anchor ak , the Euclidean distance is denoted by da, jk . Then, the
localization problem in a WSN can be expressed as follows:

Find X ∈ R2×n (1a)

s.t. Y i i − 2Y i j + Y j j = d2
s,i j , ∀ ( j, i) ∈ Ns (1b)

Y j j − 2xT
j ak + ‖ak‖2 = d2

a, jk, ∀ ( j, k) ∈ Na (1c)

Y = XT X (1d)

where X = [x1, . . . , xn], Ns = {
( j, i) | ∥∥x j − xi

∥∥ < r
}
, Na ={

( j, k) | ∥∥x j − ak
∥∥ < r

}
and r is the radio range. Convex relax-

ation techniques provide powerful approaches to solve the sen-
sor network localization problem. Semi-Definite Programming
(SDP) relaxation that has been proposed in [2] can transform
the non-convex problem (1) into a convex one. Authors in [3]
modified SDP in order to find a low rank solution, but this
method could not provide more accuracy compared with full-
SDP introduced in [2]. In such approaches, the constraint (1d)
is relaxed to the following Linear Matrix Inequality (LMI):

Y � XT X → Z =
(

I2 XT

X Y

)
� 0 (2)

where In denotes n by n identity matrix. Edge-based Semi-
Definite Programming (ESDP) relaxation has less computa-
tional complexity than the full-SDP and at the same time it is
comparable with full-SDP in terms of accuracy [4]. By applying
ESDP relaxation to the problem (1), the localization problem
can be written as follows:

min
α+,α−,β+,

β−,Z,Y

∑
( j,i)∈Ns

(
α+

i j + α−
i j

)
+

∑
( j,k)∈Na

(
β+

jk + β−
jk

)
(3a)

s.t. Z(1,2),(1,2) = I2 (3b)

Y i i − 2Y i j + Y j j − α+
i j + α−

i j = d2
s,i j (3c)

Y j j − 2xT
j ak + ‖ak‖2 − β+

jk + β−
jk = d2

a, jk

∀( j, i) ∈ Ns, ∀( j, k) ∈ Na (3d)

Z(1,2,i, j),(1,2,i, j) � 0, ∀( j, i) ∈ Ns (3e)

α+,α−,β+,β− ≥ 0 (3f)

where α+,α−,β+ and β− are squared distance errors.
Z(1,2,i, j),(1,2,i, j) is a sub-matrix of Z consists of rows and
columns 1, 2, i, j . In [5], Edge-based Maximum Likelihood
(EML) relaxation has been proposed in order to enhance the
performance of ESDP relaxation. All mentioned methods in
[2]–[5] have been presented for the case that all pairs of nodes
have Line of Sight (LOS) links. However, some connections
particularly in indoor networks are Non Line of Sight (NLOS).
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SDP-based methods have been employed to localize sensors in
indoor networks [6], [7]. An SDP-based method, namely SDP-
M has been proposed in [6] to show that NLOS connections
can be exploited to enhance the accuracy of the localization.
They assume that NLOS connections are identifiable while this
may not be a practical assumption in some cases [7]. Authors of
[7] have proposed a localization method for cases that there is
no information about NLOS connections and also they are not
distinguishable from LOS connections.

Errors in distance measurements are usually modeled by the
following formulation [7]:

d̂i j = di j + G(0, σ 2
i j ) + bi j ,

∀( j, i) ∈ Ns ∪ Na ∪ N Ls ∪ N La (4)

where {bi j } is the set of unknown positive NLOS biases and
{di j } includes both {ds,i j } and {da, jk}. G(0, σ 2

i j ) denotes a

Gaussian distribution with zero mean and variance of σ 2
i j =

KE dγ

i j . N Ls and N La include NLOS sensor-sensor and sensor-
anchor connections, respectively. Note that KE is the scaling
parameter that determines the accuracy of distance measure-
ments. This model for accuracy of distance measurements
can be applied to both Time of Arrival (TOA) and Received
Signal Strength (RSS) based measurements when γ = 2 as we
consider in this letter.

In this letter, we modify ESDP in order to find a low rank
solution and introduce a new class of SDP-based relaxation that
is robust against high level noise and NLOS biases. We evaluate
our method based on the assumption that the estimator does not
know which connections are NLOS. Furthermore, we consider
the case in which the statistics of {bi j } are unknown.

II. PROPOSED CONVEX RELAXATION

In this letter, we aim to propose an SDP relaxation to enhance
the performance of the SDP-based localization methods in
harsh environments. When there is no corruption in measured
distances, we have:

(ei − e j ; 0)T Z(true)(ei − e j ; 0) = d2
s,i j ,∀(i, j) ∈ Ns (5a)

(e j ;−ak)
T Z(true)(e j ;−ak) = d2

a, jk,∀( j, k) ∈ Na (5b)

where Z(true) is the Z matrix in the absence of any corruption
and ei is a zero column vector except for a one in the position
associated with index i . In the presence of measurement noise,
the constraints (3c) and (3d) can be rewritten as follows:

(ei − e j ; 0)T Z(n)(ei − e j ; 0) + α+
i j − α−

i j = d2
s,i j + ti j (6a)

(e j ;−ak)
T Z(n)(e j ;−ak) + β+

jk − β−
jk = d2

a, jk + v jk (6b)

ti j = 2ni j ds,i j + n2
i j , ∀(i, j) ∈ Ns (6c)

v jk = 2δ jkda, jk + δ2
jk ∀( j, k) ∈ Na (6d)

where the noise terms associated with ds,i j and da, jk are
denoted by ni j and δ jk , respectively, and Z(n) denotes the noisy
Z matrix. Errors caused by NLOS connections are positive and
generally greater than the measurement noise [6]. Therefore,
considering NLOS distance measurements as upper bound in

the optimization problem can be helpful. Furthermore, when
each pair of nodes has a LOS link, based on Chebyshev’s
inequality, more than 75% of distance measurements are not
greater than mean({d̂i j }) + 2 × std({d̂i j }). In NLOS environ-
ments, due to the presence of large positive biases, both
mean({d̂i j }) and std({d̂i j }) become considerably greater than
the case that all connections are LOS. Therefore, in this case the
probability that a LOS distance measurement be greater than
mean({d̂i j }) + 2 × std({d̂i j }) is low. According to (6), consid-
ering LOS distance measurements as upper bound restricts the
feasibility set, and this may increase the optimal matrix. As it
will be shown in this section, by using our proposed relaxation,
feasibility set is expanded and as a result the optimal value may
reduce. Because of this, we prefer to consider wider proportion
of distances as upper bounds and add the following constraints
to the optimization problem when NLOS connections are not
identifiable:

(ei − e j ; 0)T Z(n)(ei − e j ; 0) ≤ d̂2
s,i j , (7a)

(e j ;−ak)
T Z(n)(e j ;−ak) ≤ d̂2

a, jk, (7b)

{d̂s,i j , d̂a, jk} ≥ mean({d̂i j }) + std({d̂i j })
From (5), (6) and (7), we can conclude that errors in distance
measurements can cause perturbation in Z and this degrades
the accuracy of localization. Therefore, Z can be expressed as
follows:

Z(n) = Z(true) + � (8)

When the constraints (7a) and (7b) are added to the problem
(3), the dual of the resulted problem can be written as follows:

max
S,u,ω

(g(u,ω) = u11 + 2u12 + u22

+
∑

(i, j)∈Ns∪N Ls

ωs,i j (ds,i j + ni j + bi j )
2

+
∑

( j,k)∈Na∪N La

ωa, jk(da, jk + δ jk + b jk)
2) (9a)

s.t.
∑

(i, j)∈Ns∪N Ls

{ωs,i j (0; ei − e j )
T (0; ei − e j ) + S(i, j)}

+
∑

( j,k)∈Na∪N La

ωa, jk(−ak; e j )
T (−ak; e j )

+
⎛
⎝ u11 + u12 u12 0

u12 u22 + u12 0
0 0 0

⎞
⎠ = 0 (9b)

ωs,i j≤0,∀( j, i)∈N Ls, ωa, jk≤0,∀( j, k) ∈ N La
(9c)

S(i, j)
(1,2,i, j),(1,2,i, j) � 0, ∀( j, i) ∈ Ns ∪ N Ls (9d)

S(i, j)
kl = 0, ∀k /∈ {i, j} or l /∈ {i, j} (9e)

where S, u and ω are the dual variables of the problem (3). In
this section, N Ls and N La include pairs of nodes that satisfy
(7). By perturbation and sensitivity analysis, we may write [8]:

∇�(1,2,i, j),(1,2,i, j) f ∗ (0, 0, 0) = S(i, j)∗
(1,2,i, j),(1,2,i, j) (10)

The optimal value associated with (6) and (7) is f ∗(t, v,�)

and S(i, j)∗
(1,2,i, j),(1,2,i, j) denotes the optimal value of the problem
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(9). This means that if the absolute values of elements in S
decrease effectively, f ∗(t, v,�) does not increase rapidly in
the presence of error. To do this, we modify ESDP relaxation
by a perturbation matrix P as follows:

min
α+,α−,β+,

β−,Z,Y

(3a) (11a)

s.t. (3b), (3c), (3d), (3 f ), (7a), (7b) (11b)

Z(1,2,i, j),(1,2,i, j) + P (1,2,i, j),(1,2,i, j) � 0

∀(i, j) ∈ Ns ∪ N Ls (11c)

Constraints in dual problem of (11) are the same as constraints
in (9). However, the objective function is as follows:

g(u,ω) −
∑

(i, j)∈Ns∪N Ls

tr
(

P (1,2,i, j),(1,2i, j)S(i, j)
(1,2,i, j),(1,2,i, j)

)
(12)

where g(u,ω) is defined in (9a). Now, the optimal value of
the problem (3) is made robust against perturbation in Z(n) by
using the relaxation in (11c). It is useful to note that in prior
SDP problems, eigenvalues of Z are positive while eigenvalues
of Z(1,2,i, j),(1,2,i, j) in the problem (11) can be negative. This
expands the feasibility set of the localization problem in order
to obtain a lower optimal value.

Required solution time for WSN localization problem
depends on the rank of Z. Finding a low rank solution may
reduce the solution time. Therefore, we determine the perturba-
tion matrix P in order to find a low rank solution. Assume that
Z and {S(i, j)} are solutions of the problem (11) and its dual,
respectively. Then we have:

rank(S(i, j)
(1,2,i, j),(1,2,i, j)) + 4 ≤ 2q ⇒ rank(Z(1,2,i, j),(1,2,i, j))≤q

(13)

The proof of (13) is given in Appendix A. From (13), we can
conclude that by minimizing the rank of S(i, j)

(1,2,i, j),(1,2,i, j), we
minimize the rank of Z(1,2,i, j),(1,2,i, j) as well.

Since we aim to find a low rank solution, we use rank(.)

as a regularizer. It is known that if a matrix is symmetric and
positive semidefinite, we may minimize its trace as a convex
approximation of its rank. Therefore, we aim to determine the
perturbation matrix P (1,2,i, j),(1,2,i, j) in order to minimize the

rank of S(i, j)
(1,2,i, j),(1,2,i, j). Thus, the perturbation matrix is chosen

as follows:

P (1,2,i, j),(1,2,i, j) = pi j I4, ∀( j, i) ∈ Ns ∪ N Ls (14)

Then, we may rewrite (12) as follows:

g(u,ω) −
∑

(i, j)∈Ns∪N Ls

pi j tr(S(i, j)
(1,2,i, j),(1,2,i, j)) (15)

Therefore, by the perturbation matrix in (14), we can mini-
mize the rank of S(i, j)

(1,2,i, j),(1,2,i, j). This minimizes the rank of
Z(1,2,i, j),(1,2,i, j).

Obviously, choosing an appropriate regularization term is
an important issue in our proposed Perturbed Edge base
Semi-Definite Programming (PESDP) method. If it is too low,

the perturbation matrix will not affect the ESDP solution, effec-
tively. On the other hand, if it is chosen too large, tr(Y − XT X)

will become so large that accuracy of the localization may
degrade, significantly. The optimum choice of the parameter pi j
depends on the size of the network and the level of noise. Our
numerical results show that the optimum choice of regulariza-
tion term varies with errors in distance measurements. It is also
shown that the number of sensors does not affect the localiza-
tion accuracy, considerably, in the presence of large errors in
distance measurements.

III. SIMULATION RESULTS

In this section, several numerical comparisons for our pro-
posed formulation in (11) are reported. The aim of this section
is to show how perturbed SDP relaxation performs under vari-
ous error conditions. The simulations are performed in a 20 m
by 20 m area. In addition, we use SDPT3 solver in CVX
software [9]. We compute the average position error over 50
realizations of noise and biases as follows:

P E = (1/nL)

⎛
⎝ L∑

j=1

n∑
i=1

∥∥x̂i − xi
∥∥
⎞
⎠ (16)

where L is the number of noise realizations and n is the number
of sensors. x̂i and xi denote the estimated and true positions of
the i th sensor, respectively. The maximum number of neigh-
bors for each sensor is limited to 5. {bi j } is exponentially
distributed and NLOS connections are not identifiable. The pro-
posed method in [7] is called SDP-NLOS in this letter, for
comparison. For LOS connections, we have E[d̂2

i j ] = E[d2
i j ] +

E[ξ2
i j ] for all ( j, i) ∈ Ns ∪ Na where ξ is the zero mean error

vector. Therefore, we can conclude that the greater variance of
additive noise, the greater mean of squared distance measure-
ments. The value of pi j should be increased by the growth in
noise level and NLOS biases. Therefore, we set the value of
pi j proportional to E[d̂2

i j ]. By our numerical experiences, we

realize that 0.5r2 can be used as a criterion to determine how
large E[d̂2

i j ] is. When E[d̂2
i j ] is less than 0.5r2, we set pi j to 0.

Otherwise, we obtain pi j from the following formulation:

pi j = 0.05(E[d̂2
i j/r2] − 0.5)

∀(i, j) ∈ Ns ∪ Na ∪ N Ls ∪ N La (17)

In Fig. 1 the effect of NLOS connections on the position error
and the standard deviation of error is studied. μN denotes the
ratio of the number of NLOS connections to the number of all
available distance measurements. KE , the radio range and mean
of NLOS biases are set to 0.1, 6 m and 5 m, respectively. The
number of sensors and anchors are 50 and 5, respectively. As
shown in Fig. 1 our proposed PESDP outperforms the other
methods in terms of accuracy for all amounts of μN . Note that,
in Fig. 1 “PESDP0” denotes the problem (11) with pi j = 0.
Fig. 1 displays the improvement caused by perturbed SDP
relaxation (11c).

In Fig. 2 we evaluate the performance of localization meth-
ods by increasing the noise value, for n = 100. 40% of
connections are in NLOS and the mean of NLOS biases is
considered to be 4 m. The number of anchors is 5 and the radio
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Fig. 1. Average position error (solid lines) and standard deviation (dashed
lines) of ESDP [4], EML [5], full-SDP [2], SDP-NLOS [7] and our proposed
PESDP when NLOS connections are not distinguishable.

Fig. 2. Average position error (solid lines) and standard deviation (dashed
lines) of ESDP [4], EML [5], full-SDP [2], SDP-NLOS [7] and our pro-
posed PESDP by increasing the noise value when NLOS connections are not
distinguishable.

TABLE I
ACCURACY COMPARISON IN A 40 m BY 40 m AREA

range is set to 4 m. As can be seen in Fig. 2, our proposed
PESDP shows better performance compared to the other meth-
ods. Simulations show that our proposed PESDP causes at least
0.3 m improvement in both average position error and aver-
age standard deviation compared to others. Table I presents the
accuracy of localization methods. Simulations are performed in
a 40 m by 40 m area and the number of anchors is set to 15. All
connections are LOS. Furthermore, Cramer-Rao Lower Bound
(CRLB) is computed using [1].

Table II shows the required time to solve the optimization
problem of different edge-based algorithms for different num-
ber of sensors. For these results, the number of anchors is set to
5 and all nodes are considered to be in LOS. KE and the radio
range are set to 0.1 and 6 m, respectively. As can be seen in
table II, our proposed PESDP is much faster than EML, espe-
cially when the number of sensors is large. It is also shown that
our proposed PESDP is faster than ESDP.

IV. CONCLUSION

In this letter, we proposed a new SDP relaxation to enhance
the performance of SDP-based localization methods in both
accuracy and computational complexity. We modified EDSP

TABLE II
SOLVING TIME COMPARISON IN SECONDS

relaxation by a perturbation matrix in order to make it robust
against large errors in distance measurements. Simulation
results confirmed that our proposed PESDP shows better accu-
racy compared to ESDP, EML, full-SDP and SDP-NLOS in
NLOS environments. The performance of the proposed method
is evaluated when NLOS and LOS connections are not identifi-
able.

APPENDIX A

Assume that: A ≺ 0. Then, by (9d) we may write:

S(i, j)
(1,2,i, j),(1,2,i, j) − ZT

(1,2,i, j),(1,2,i, j) AZ(1,2,i, j),(1,2,i, j) � 0

(18)

Then, we may write the following using Schur complement:(
S(i, j)

(1,2,i, j),(1,2,i, j) ZT
(1,2,i, j),(1,2,i, j)

Z(1,2,i, j),(1,2,i, j) A−1

)
� 0 (19)

Now consider the following lemma [10]: Let U ∈ Rm×n be
a given matrix then rank(U) ≤ q if and only if there exist
matrices V = V T ∈ Rm×m and W = W T ∈ Rn×n such that:

rank (V ) + rank (W) ≤ 2q(
V U

UT W

)
� 0 (20)

Therefore, we may conclude (13).
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