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Abstract—With the development of Internet of Things (IoT) 

and cloud technologies, numerous IoT devices and sensors 

transmit huge amounts of data to cloud data centers for further 

processing. While providing us considerable convenience, 

cloud-based computing and storage also bring us many security 

problems, such as the abuse of information collection and 

concentrated web servers in the cloud. Traditional intrusion 

detection systems (IDS) and web application firewalls (WAF) are 

becoming incompatible with the new network environment, and 

related systems with machine learning or deep learning are 

emerging. However, cloud-IoT systems increase attacks against 

web servers, since data centralization carries a more attractive 

reward. In this paper, based on distributed deep learning, we 

propose a web attack detection system that takes advantage of 

analyzing URLs. The system is designed to detect web attacks and 

is deployed on edge devices. The cloud handles the above 

challenges in the paradigm of the Edge of Things (EoT). Multiple 

concurrent deep models are used to enhance the stability of the 

system and the convenience in updating. We implemented 

experiments on the system with two concurrent deep models and 

compared the system with existing systems by using several 

datasets. The experimental results with 99.410% in accuracy, 

98.91% in TPR and 99.55% in DRN demonstrate the system is 

competitive in detecting web attacks. 

 
Index Terms— Distributed Deep Learning, Distributed System, 

Edge of Things, Web Attack Detection 

 

I. INTRODUCTION 

nformation has existed everywhere around us since the 

development of information technology, and the Internet has 

changed the traditional ways of our daily life. At the same time, 

web applications that are widely applied in different fields have 

been the most popular applications of the Internet, and the rise 

of cloud technologies have made web services faster and more 
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convenient. For convenience, users can get web services from 

providers by inputting simple Uniform Resource Locator 

addresses (URLs) in browsers. However, it is possible for 

attackers to hack into servers with well-designed URLs sent to 

the servers. 

Gartner has reported that 75 percent of attack behaviors were 

discovered in the application layer and that web servers have 

been the primary targets of hackers during the cyber security 

incidents that have happened in recent years. There are two 

reasons why hackers are inclined to hack into web servers. On 

the one hand, millions of users’ private information (e.g., ID 

numbers, addresses, bank accounts) are stored in the databases 

of servers, and hackers will get a considerable profit by selling 

the data. On the other hand, hackers can inject malicious code 

into the source documents of servers, and users will get hacked 

when they browse or download these documents. Hackers are 

then able to do what they want on victims’ computers or smart 

phones. Common web attacks include SQL injections, code 

injections, sensitive data exposures, cross-site scripting (XSS) 

path traversal and more. Injection attacks, including SQL 

injections and code injections, rank first and XSS ranks 7th in 

the report of the Top 10 security threats released by OWASP in 

2017. 

In the cloud, common Intrusion Detection Systems (IDS), 

such as snort and Web Application Firewalls (WAFs), are used 

to protect against web attacks, but they are still penetrable 

because most WAFs rely on regular expression-based filters 

created from known attack signatures, and they require much 

expert configuration. Deep learning has been implemented in 

many fields with prominent achievements. For example, deep 

learning can be used in automatic translation machines to 

improve the reliability, in recommendation systems to suggest 

what customers are interested in or want to buy next, and in 

image recognition systems to detect objects. In the meantime, 

deep learning has been applied to cyber security in some studies 

due to its capability of analyzing and self-learning. Detecting 

web attacks within URLs from normal users and attackers using 

deep learning is challenging, and there are four major 

problems: 

⚫ An effective way to transform all kinds of URLs into 

representations is important in view of the various ways 

that different attacks hide in their URLs. 

⚫ Different attacks show different signatures in their URLs, 

and thus feature selection is not easy. 

⚫ Most applications of deep learning in cyber security have 

only one model to do their detection, and it is not easy to 
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update the system. 

In the environment of an IoT cloud, its centralization feature 

affects the application of distributed services, such as the 

network security mechanism for IoT applications. Novel 

security models, controls, and decisions distributed at the edge 

of the cloud are queried by new IoT applications in the new 

paradigm named the EoT. In this paper, we proposed a 

distributed system for web attack detection from URLs by 

utilizing deep learning techniques. These include detectors 

based on novel deep learning architectures such as 

Convolutional Neural Networks (CNNs) and models in Natural 

Language Processing (NLP) [1]. Specifically, our work makes 

the following contributions: 

⚫ We find a method to represent all kinds of URLs. Briefly, 

we replace every word or character with words from 

dictionaries that are previously defined in the light of 

different types of attacks. 

⚫ The system can distinguish anomalous requests and 

normal ones by automatically learning features. 

⚫ To enhance the stability of the detection system, multiple 

concurrent models are applied in our system.  

⚫ We propose a generic distributed web attack detection 

system on edge devices of the cloud. 

This paper is organized in the following manner. Section II 

presents a brief review of related works. In Section III, we 

explain the architecture of our system and describe the details 

about our methodology. The datasets and settings of the 

experiments are provided in Section IV. We present our 

experimental results and have a short discussion in Section V. 

In Section VI, we conclude the paper and discuss our future 

work. 

II. RELATED WORK 

There have been many studies focused on utilizing deep 

learning to solve problems in cyber security [8-10]. Works in 

[2-4] concentrated on detecting malware using deep learning. 

Manually chosen features by analyzing the raw data were used 

to train the deep learning models in [2, 3] while Kim et al. [4] 

extracted the features from traffic with software instead of from 

the raw data. Particularly, in [4] a triggering relationship graph 

(TRG) was proposed to discover the behaviors of software and 

inputs into long short memory units (LSTM) to detect malware. 

Similar to the works above, the approach proposed by Du et al. 

[5] was able to perform malware detection. Not only that, their 

work can discover intrusive behaviors by using LSTMs to 

analyze operating system logs. Additionally, logs are also used 

by Rashid et al. [6]. To detect insider threats in a system they 

analyzed logs of applications with hidden Markov models 

(HMM). Other significant works were studied in [1] and [7]. In 

[1], authors were aimed at detecting malicious commands in 

powershells to ensure the security of operating systems, while 

Han et al. [7] focused on monitoring programmable logic 

controllers (PLCs) by utilizing signal form side channels. 

In the domain of identifying malware traffic, Agarap et al. 

[13] proposed a new neural network architecture combining 

gated recurrent units (GRU) and support vector machines 

(SVM) for intrusion detection in network traffic data. They 

evaluated several models to do a comparison on the 2013 Kyoto 

University honeypot system’s network traffic data and KDD 

Cup 1999 dataset. Differently, Zhang et al. [22] concentrated 

on identifying encrypted malware traffic with contextual flow 

data. They extend from [19] with a data omnia approach and 

supervised machine learning models. Great results on 

real-world datasets in TLS, DNS, and HTTP showed its 

superiority. 

A body of works, including [15-22], share a common goal 

with our work: detecting web attacks from URLs. Especially, in 

[23], authors used features selected by the GeFs [24] algorithm, 

manually and automatically using N-grams to train an SVM to 

learn those features and develop a capability of detecting web 

attacks. Later, Kim et al. [4] proposed a different way of 

analysis. The authors focused on more details in SQL injection 

detection instead of the many kinds of attacks in [23]. Queries 

from the database were parsed into query trees using a syntax 

tree, and they defined some features from the query trees and 

input them into an SVM classifier. Uwagbole et al. [25] 

extended the works above and proposed a novel method to 

detect SQL injections by modeling SQL queries with graphs 

that they defined. First, the authors replaced the queries with 

some predefined words, and then they generated a directed 

graph for every query and selected features from the graph. In 

the end, an SVM classifier trained by those features will detect 

a query as normal or an SQL injection attack. 

It is obvious that deep learning provides new solutions for 

challenges in the field of cyber security. Especially, more 

studies will focus on extracting features automatically for the 

detection of web attacks. N-grams was widely used in 

automatic feature selection because of its great achievements in 

NLP tasks. There are two common limitations the existing 

works in web attack detection. On the one hand, only one 

discriminative model was chosen to do classifications in the 

existing works, and there is a risk that those systems using a 

single model are likely to be attacked by hackers, according to 

studies in [26, 27]. On the other hand, most approaches ignored 

how to update their systems. Systems would not detect 

changing attacks without updating in the real word. Different 

from existing works, in our work, we design our system by 

considering these two limitations. 

III. METHODOLOGY 

We now proceed to describe an overview of our proposed 

system and explain in detail every part of the system. In 

Subsection III-A, we describe the framework of our system and 

how the system takes advantage of distributed deep learning to 

detect web attacks from URLs on edge devices. We detail the 

method for processing the URLs collected online in Subsection 

III-B. Then, in Subsection III-C, we describe how we convert 

the processed URLs into vectors with models widely used in 

NLP. In Subsection III-D we introduce the detection models 

used in our system. 

A. Architecture 

Our system is composed of Data preparation, Discrimination 

and Actions. As shown in Fig. 1, URLs collected from edge 
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devices of the cloud will be first sent to Data preparation, and 

then the processed data will be input into Feature Discriminator 

and Data Discriminator for detection. Actions will respond in 

accordance with the results from Discrimination. 

⚫ Data Preparation is used to convert raw URLs collected 

from edge devices into representations that can be input 

into Discriminators. First, raw URLs will be decoded and 

lowered in Processing, and then decoded data will be 

represented in a special format in data normalization, 

which will be discussed in Subsection III-B. Afterwards, 

the represented data will be sent to Data Discriminator. At 

the same time, in order to fit the inputs of Feature 

Discriminator, the represented data will also be converted 

into vectors in feature representation, which will be 

discussed in Subsection III-C.  

 

 
⚫ Discrimination is responsible for distinguishing normal 

URL requests and Anomalous URL requests containing 

web attacks. We proposed multiple models in our system. 

Actions will perform a response directly only when all 

discriminators make the same decision (both are normal or 

anomalous) or it will respond according to the results from 

the Comprehensive decision. Specially, in this paper we 

test two concurrent models, which will be detailed in 

Subsection III-D, for the detection task, and the two 

models are trained and deployed separately. Moreover, we 

add results from the two discriminators in varying 

proportions for comprehensive decision. 

⚫ Actions are designed for responding according to the 

decisions from Discrimination. Actions will take a normal 

response if a URL is detected as normal. If not, it will take 

an anomalous response. At the same time, a URL will be 

classified by a classifier (we use the same model as 

Feature Discriminator) and its information will be saved 

in logs. 

On the one hand, there are three advantages of our system: 

first, Discrimination with multiple concurrent models can 

decrease the numbers of underreporting. Second, the system 

can to some extent protect from attacks against deep learning. 

Third, it is convenient to update the system. Particularly, we 

will discuss the second and the third points in Section V. On the 

other hand, in Actions, the Classifier and logs will provide 

detailed information about anomalous URLs, will help to 

discover unseen attacks and to will some extent help to update 

the system. 

B. Data Normalization 

In distributed nodes in IoT environments URL requests 

toward servers are in different formats because of the different 

configurations and languages in servers. In addition, attackers 

construct URL requests with various annotations, which 

change the structure or parameters of URLs to launch attacks. 

To detect web attacks (specially, SQL injections, XSS, and 

command injections) from these URL requests in various 

formats, we used a method to convert these URLs into the same 

representation. First, we define a special set of keywords 

consisting of SQL keywords and functions, JavaScript 

keywords and functions, html keywords etc. Specially, these 

keywords are selected by experts from those are most 

commonly used in daily works or attacks. Some of them are 

presented in Table I. Particularly, the defined set will be 

updated according to configurations of new servers in this 

cloud service. We then defined a transformation scheme 

showed in Table Ⅱ that transforms other words into the same 

expressions, eventually converting URLs into the same format 

utilizing the keywords and transformation scheme. For 

example, we collect a URL request processed in Processing as 

follows: 

/ zabbix / php / local . php ? parameters = 1 '  )  or 4411 =  

( select count (  *  )  from sysusers as sys1 , sysusers as sys2 , 

sysusers as sys3 , sysusers as sys4 , sysusers as sys5 , 

sysusers as sys6 )  and  (  ' edcm '  like  ' edcm 

And it will be converted into a special expression as follows: 

/ PathString / PathString / PathString . php ? PureString 

= Numbers ' ) or Numbers = ( select count ( * ) from 

PureString as MixString , PureString as MixString , 

PureString as MixString , PureString as MixString , 

PureString as MixString , PureString as MixString) and ( ' 

PureString ' like ' PureString 
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Fig. 1.  The framework of proposed system 

TABLE I 

EXAMPLES OF KEYWORDS DEFINED 

Description Keywords 

SQL 

select update delete insert create alter drop order by group by 

truncate replace commit rollback savepoint transaction set 

distinct all desc null limit top … 

html 
doctype a abbr acronym address applet area article aside audio 

b base basefont bdi bdo big blockquote body br button … 

Javascript 

section select small source span strike strong style sub 

summary sup table tbody td textarea tfoot th thead time title tr 

track … 

… … 

punctuations / + ? & ; = , ‘ “ ( ) < > * ! $ # | ^ { } \ -- % ~ @ . ` [ ] : 
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Words in keywords or punctuations are reserved because 

they play meaningful role in servers, while others are 

parameters and are replaced by the Transformation scheme in 

Table Ⅱ . Particularly, we consider a special situation that 

words in keywords did not appear in the training data but do 

appear in real-time data. “SenString” in Table Ⅱ is designed to 

solve this problem. The procedure in Data Normalization is 

explained in Fig. 2. 

 

C. Feature Representation 

Word2vec [28] was proposed to do the word embedding job, 

which is using vectors to represent words. This has been widely 

applied NLP studies. We choose to utilize CBOW, one of the 

word2vec models, to represent words in normalized URLs with 

vectors. As shown in Fig. 3, the model takes one-hot vector 

𝑋𝑖 ∈ 𝑅𝑣 for every word in the text as an input, a hidden vector 

h ∈ 𝑅𝑣 and a one-hot vector 𝑌𝑖 ∈ 𝑅𝑣 for the output. For the k 

vectors of those words that are closest to the 𝑖𝑡ℎ word will be 

the input, the 𝑖𝑡ℎ word will be the label. The first part is to map 

the input k vectors to a hidden representation h ∈ 𝑅𝑁 through a 

simple mapping h =
1

𝐶
𝑊 ∙ (∑ 𝑋𝑖

𝑘
𝑖=1 ). W ∈ 𝑅𝑉×𝑁 is a matrix of 

weights between the input layer and the hidden layer. There is 

another simple mapping between the hidden layer and the 

output layer, and 𝑌𝑖 = softmax(𝑊′𝑇 ∙ ℎ). The error needs to be 

minimized, which can be formulated as follows: 

E = arg min
(𝑊,𝑊′)

𝐿(𝑋𝑖，𝑌𝑖) 

 

 
where L is the loss function and every word 𝑋𝑖 is mapped to 

a 𝑌𝑖. Every word will be converted into a unique vector 𝐶𝑖 ∈ 𝑅𝑁 

( 𝐶𝑖 = 𝑋𝑖 ∙ 𝑊 ) after training. TF-IDF means the term 

 
Fig. 2.  Data Normalization Algorithm 

 

 
Fig. 3.  Model of CBOW 

 

 
Fig. 4.  Concatenating CBOW vector and TF-IDF feature together 

TABLE Ⅱ 

TRANSFORMATION SCHEME 

Transformation Description 

PathString 

Replacing the path parts in URLs. Example: 

http://example.com/main/index.php? will be replaced as 

http://example.com/PathString/PathString? 

Numbers Replacing all pure numbers in URLs. 

PureString Replacing strings which are made up of a-z and ‘-’. 

MixString 
Replacing strings which contain characters expect a-z and 

‘-’ 

UniString Replacing all Unicode data. 

HexString Replacing all Hex data 

SenString 
Replacing keywords didn’t appear in training data but 

appear in real-time data. 

Punctuations are reserved 
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frequency–inverse document frequency has been widely used 

in text classifications in NLP. We concatenate vector 𝐶𝑖  and 

TF-IDF vector 𝑇𝑖 together and get the feature vector 𝑈𝑖 for one 

word, as illustrated in Fig. 4. 

D. Deep learning Models 

We take advantage of convolution in Feature Discriminator. 

A Convolutional Neural Network (CNN) is a great learning 

architecture widely used in computer vision. As filters slide the 

2D input matrix, the dot product between filters and the same 

size of corresponding windows in the input are computed for 

feature maps. Generally, a Relu function, pooling layers and 

dropout layers are used in CNN architectures to optimize the 

neural network. Particularly, we present an amendment to a 

Residual network (ResNet) [29], a special CNN, by adding 

factors for every branch, see Fig. 5. The procedure is as 

follows: 

𝐹1(𝐱) = 𝐱 

𝐹2(𝐱) = 𝑝𝑜𝑜𝑙(𝐱) 
𝐹3(𝐱) = 𝑅𝑒𝑙𝑢(𝐶𝑜𝑛𝑣(𝐱)) 

𝐻(𝐱) = 𝑝𝑜𝑜𝑙(α𝐹1(𝐱) + β𝐹2(𝐱) + γ𝐹3(𝐱)) 
where α, β and γ are factors for every branch and will be 

optimized with the whole network. We call it M-ResNet in the 

following. The previous works have proven that CNN has a 

fantastic capability of performing text classification jobs. URLs 

are a kind of special text data. It stands to reason to use ResNet 

to detect anomalous URLs. We implemented eight blocks in 

Fig. 5 in Feature Discriminator whose structure is depicted by 

Fig. 6. A matrix composed of feature vectors 𝑈𝑖 is input into 

Feature Discriminator. Four M-ResNet blocks are used for the 

length of the matrix and another four blocks are used for the 

height and each followed by a normalization layer and a 

dropout layer (omitted in Fig. 6). That is, followed by three 

full-connected layers, each followed by a dropout layer with a 

probability of 0.5 (omitted in Fig. 6), and a final output layer. 

 

 
 

We use FastText [30] for Data Discriminator. FastText is a 

deep learning model for text classification created by 

Facebook’s AI Research (FAIR). It should be made clear that 

FastText is used because a URL is a kind of text. This model is 

similar to CBOW mentioned above. Based on CBOW, the 

Softmax functions, N-gram features and other amendments are 

implemented. The results in [30] show its great capability for 

text classification. 

IV. EXPERIMENTS 

To validate our system, we implement experiments on the 

system with two concurrent models. In addition, we run all 

experiments under an environment with an Intel Core i7-6900k, 

4 Kingston DDR4 16 G, 2 CUDA-enabled MSI GTX 1080Ti 

and Ubuntu 16.04. The structure of the system is described in 

Fig. 1 and uses Python 3.6.3-64 bit and the TensorFlow 1.8.0 

library from Google. In the following section, we have a brief 

overview of the datasets used in our experiments and 

evaluation. 

A. Datasets 

Our experiments are based on three datasets: HTTP Dataset 

CSIC 2010, FWAF and HttpParams Dataset. 

1) HTTP DATASET CSIC 2010 has been most widely used 

for studies on web intrusion detection. This dataset was 

collected automatically on a web application in the authors’ 

department. Significantly, more than 36000 normal requests 

and 25000 anomalous requests are provided in the dataset. 

Attacks in this dataset contain buffer overflows, information 

gathering, SQL injection, files disclosure, XSS (Cross-site 

scripting), CRLF injection, parameter tampering etc. In our 

experiment, we only used URLs of HTTP GET requests from 

the dataset. 

2) FWAF is a dataset created by a community named 

FSECURITY for detecting malicious web queries with 

Machine learning driven web application firewalls. They 

collected more than 1290000 normal requests and 48000 

anomalous requests from the Internet.  

3) HttpParams Dataset is a well-known dataset on Github. It 

was created with several tools, include sqlmap, xssya, Vega 

Scanner and the FuzzDB repository. It contains 19304 normal 

requests and 11763 anomalous requests. Particularly, every 

piece of data was labeled as ‘norm’ meaning normal or ‘anom’ 

 

 
Fig. 5.  The architecture of modified ResNet 

 

 
Fig. 6.  The structure of Feature Discriminator 
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meaning anomalous. Additionally, the data labeled ‘anom’ was 

marked with its type of attack (‘sqli’ refers to SQL injection, 

‘xss’ refers to Cross-Site Scripting, ‘cmdi’ refers to Command 

Injection and ‘path-traversal’ refers to Path Traversal attacks). 

We used all HTTP GET requests from CSIC 2010 in the 

beginning. After removing duplicated data and incorrectly 

labeled data from these three datasets, we extract 4812 normal 

requests and 5382 anomalous requests from CSIC 2010, 49969 

normal requests and 44244 anomalous requests from FWAF 

and 18828 normal requests and 8620 anomalous requests from 

HttpParams Dataset. We mix these data together because of the 

variety of requests in distributed edge devices. It should be 

noted that we only use anomalous data that includes SQL 

injection, XSS and command injection. 

B. Settings 

We consider three main problems experimentally: 

⚫ P1 How to transform a URL into a vector while 

retaining most of its information in the URL.  

⚫ P2 Which deep learning model is suitable for extracting 

features from vectors of URLs and detecting 

anomalous requests. 

⚫ P3 How to optimize the detecting model to get high 

accuracy and low false alarms. 
For P1, we try several methods to convert URLs into vectors. 

These methods include encoding characters with their ASCII 

code, encoding characters with their vectors from the word2vec 

model, encoding words in URLs with the word2vec model and 

encoding words in URLs with the methods in Subsection III-B 

and Subsection III-C. For P2, we conduct some experiments on 

several machine learning and deep learning algorithms, 

including Naïve Bayes, X-means, SOM, C4.5, RNN etc. For P3, 

we propose a system described in Subsection III-A and 

compare it with some existing methods for detecting web 

attacks. 

 In our experiments, we evaluate the results with accuracy, 

recall, FP and precision, which are typical performance metrics 

to evaluate models used in machine learning or deep learning. 

In the following, TP refers to “true positive”, TN refers to “true 

negative”, FP refers to “false positive” and FN refers to “false 

negative”. 

Accuracy (ACC) indicates the proportion of all requests that 

are correctly detected over all the data as follows: 

ACC =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Recall (TPR) is the ratio of real attacks that are detected as 

anomalous over all attacks as follows: 

TPR =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The FPR rate is the ratio of normal requests that are detected 

as attacks over all normal requests as follows: 

FPR =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Precision is defined as the ratio of anomalous predictions that 

are correct as follows: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Particularly, we define the rate of real normal requests that 

are detected as normal over all normal requests (DRN) as 

follows: 

DRN =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

V. RESULTS AND DISCUSSIONS 

Fig. 7-9 and Table Ⅲ give our experimental results on the 

data from CSIC 2010, from which we could see the word2vec 

model’s capability of representation for URLs. Figure 10 and 

Figure 11 compare our system with other proposed approaches 

and show the results on a mixed dataset composed of the three 

datasets mentioned above. 

To find an effective way to transform URLs into 

 
Fig. 9.  Results for M-ResNet with word2vec model for single word 

  

 
Fig. 7.  Results for CNN with ASCII code 

  

 
Fig. 8.  Results for M-ResNet with word2vec model for single char 
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representations for P1, we conduct experiments with three 

methods. We replace characters with their ASCII code and use 

CNN as a discriminator, and the accuracy fluctuates 

approximately 0.955, as shown in Fig. 7. We then test 

M-ResNet with encoded characters by using word2vec’s model. 

The results are provided in Fig. 8. We see that the average 

accuracy is much higher than it is in Fig. 7. It seems that the 

word2vec model has a better capacity of representing 

characters in URLs while retaining the information in the URL. 

It should be added that the TPR values that fluctuate 

approximately 0.93 are not good enough, and they are the most 

important metrics in detecting web attacks. 

Inspecting the curves in Fig. 9, we see that the averages of 

these three metrics are higher than the averages in Fig. 8. 

Obviously, the curves of the TPR, ACC and Precision have the 

same trend. The results of kernel size=2×3 achieve an ACC of 

0.9941 and a precision of 0.9959. They outperform the others. 

The best score for TPR comes from the result of a kernel size=3

×3, which has only 0.0001 more than the result of a kernel 

size=2×3. It stands to reason that we set 2×3 as our kernel 

size for our model moving forward. Table Ⅲ compares several 

methods on dataset CSIC 2010 and shows that M-ResNet with 

word2vec for single words outperforms the other listed models. 

It can be seen from this that M-ResNet with the word2vec 

model for single words has the best capability of representing 

URLs and detecting web attacks. It should be added, however, 

that while the words represented by the word2vec model come 

from URLs, the dictionary of words is too big, and it is not easy 

to tackle unknown words. 

 To solve the problem of unknown words, we utilize the 

method in Subsection III-B and implement experiments with 

the existing models on the mixed dataset for a comparison. 

Particularly, we used two concurrent discriminators for the 

experiments below. In Fig. 10 our system, composed of Feature 

Discriminator and Data Discriminator, performs closely to 

Feature Discriminator and better than Data Discriminator. This 

proves that our system has the capacity to take advantage of the 

two concurrent models. The comparison with existing systems 

is shown in Fig. 10 and Fig. 11. We see that Precision 

histograms are almost the same while ACC and TPR 

histograms show clear distinctions; therefore, the model DBPF 

in [2] performs poorly on this dataset, while the other models 

perform closely to each other. The model DBPF gets a 

Precision score close to our system, and a better FPR score than 

our system. Our system performs much better than it in ACC 

and TPR scores, which are the two most important metrics for 

detecting web attacks. The model CLCNN in [20] performs the 

best, achieving 0.9959 in TPR, 0.9815 in ACC and 0.0299 in 

FPR. Our system, which gets scores very close to CLCNN, 

achieves 0.9890 in TPR, 0.9777 in ACC and 0.0321 in FPR. 

The model SDCNN in [22] and our system get close ACC 

scores, but our system achieves a much higher TPR score than 

CLCNN while it gets an FPR score much better than our system. 

Interestingly, quite different performances between DBPF and 

CLCNN are reported even though they have very similar 

architectures. It may be one of the reasons that the length of 

vectors for every character in CLCNN is 128, while it is 32 in 

DBPF. It seems that vectors in high dimensions can retain more 

information about URLs. Maybe our system will achieve better 

scores if we increase our vector size from 48 to 128. 

 

 
 These comparison results prove that our system can 

sufficiently represent URLs and detect web attacks on edge 

devices and is competitive with existing approaches. Second, it 

is convenient to update our system when required. First, 

discriminators will be retrained with data newly collected 

offline. Next, discriminators will be replaced by retrained 

models in turn. The system will be working all the time during 

updating because one model is getting updated while the others 

are still working. For instance, if Feature Discriminator need to 

be updated, the comprehensive decision will make a judgment 

according to other discriminators. Significantly, attacks against 

 
 

Fig. 10.  ACC, TPR, Precision: comparison for different models on mixed 

dataset 

  

 
 

Fig. 11.  FPR: comparison for different models on mixed dataset 

  

TABLE Ⅲ 

COMPARISON ON DATASET CSIC2010 (* : REFERRING TO [20], †: REFERRING TO [22] AND ‡: 

REFERRING TO [21]) 

Model ACC TPR DRN 

ModSecurity with CRS* 0.5520 0.436 0.9941 

EM* 0.7486 0.7516 0.7478 

X-means* 0.7493 0.6837 0.9865 

Naïve Bayes* 0.8408 0.5235 0.9268 

SOM* 0.9282 0.9497 0.9242 

C4.5* 0.9650 0.9914 0.8697 

Model with RNN in [20] * 0.8515 0.7403 0.9546 

Model with GRU in [20] * 0.9788 0.9722 0.9846 

Model with LSTM in [20] * 0.9856 0.9888 0.9832 

Model in [22]† 0.9649 0.9335 0.9864 

Model in [21]‡ 0.9881 0.9835 0.9912 

M-ResNet with word2vec for word 0.9941 0.9891 0.9955 

 



1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2938778, IEEE
Transactions on Industrial Informatics

deep learning models have been proposed in [26, 27]. In fact, a 

model could be bypassed by adversarial samples well-designed 

by the attackers. In our system, we use several completely 

different models; if one model is bypassed, other models will 

largely recognize it and the administer can update the system 

according to the adversarial sample’s information saved in the 

logs. 

VI. CONCLUSIONS AND FUTURE WORK 

In this work, we proposed a distributed system for web attack 

detection from URLs by utilizing deep learning techniques. 

This system is designed to protect multiple web applications in 

the distributed environment of the EoT. Several deep models 

will be trained separately and deployed in different servers. 

This system will normalize the URLs of edge devices and will 

respond according to the detection results from concurrent 

models. The experimental results show the word2vec model’s 

capacity for representing URLs and the system’s sufficient 

capability of detecting web attacks. In addition, this system has 

the potential to be useful in the real world because of its 

automatic feature selection, convenience of updating and 

stability of protecting from attacks against distributed deep 

models.  

Numerous directions for our future work are considered. 

Primarily, we will try more distributed deep models such as 

decision trees, LSTM, HMM and etc. in the discrimination. 

Second, we will optimize the algorithm for comprehensive 

decisions, which at the present is adding add probabilities from 

discriminators in varying proportions. Stacking and bagging 

are most famous techniques in combing deep models. Third, 

optimizing the methods of feature presenting which include 

SVD, PCA and Auto-encoder to gain better performance.  
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