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Abstract—Recommender systems aim to provide person-
alized suggestions to customers which products to buy or
services to consume. They can help to increase sales by helping
customers discover new and relevant products. Traditionally,
recommender systems use the purchase history of a customer,
e.g., the purchased quantity or properties of the items. While
this allows to build personalized recommendations, it is a
very limited view of the problem. Nowadays, extensive in-
formation about customers and their personal preferences is
available which goes far beyond their purchase behaviour. For
example, customers reveal their preferences in social media,
by their browsing habits and online search behaviour or their
interest in specific newsletters. In this paper, we investigate
how information from different sources and channels can be
collected and incorporated into the recommendation process.
We demonstrate this, based on a real-life case study of a retailer
with several million transactions. We discuss how to employ
a recommender system in this scenario, evaluate various
recommendation strategies and describe how to incorporate
information from different sources and channels, both internal
and external. Our results show that the recommendations can
be better tailored to the personal preferences of customers.

Keywords-Recommender Systems; Omni-Channel; Machine
Learning;

I. INTRODUCTION

In the past, retailers were mostly passive actors which

offered numerous products to customers. Based on the in-

creasing catalogue size, growing competition and digitization,

a new approach to actively recommend products became

more popular. Its goal is to help customers sift through

the catalogue of products by recommending items that a

customer might like. Nowadays, the success of a retailer is

closely related to a well implemented recommender system

[1]. Modern recommender systems essentially recommend

products that users with similar preference liked.

In this paper, we show how to implement a recommender

system based on transactional data from a real-life case

study of an on- and offline retailer with several million

transactions. In particular, we show that there is much more

information available beyond the purchase history which can

improve the recommendation process. For example, we infer

preference of a customer by analysing its search and browsing

behaviour on the company’s website. The underlying idea

is that searching for products and browsing product pages

already indicates preference. Similarly, we utilize newsletter

subscriptions and click-rates as well as data from social

media sources. Specifically, the customer’s like, share and

post behaviour helps to understand what products he or

she might be interested in. Beyond this, we also propose

how to improve the timing of recommendations by detecting

when users might be interested. We demonstrate that our

approach allows to extract better preference indicators and

makes accurate recommendations. We term our approach

an omni-channel recommender system since it integrates

and uses information from all available channels and data

sources.

The structure of this paper is as follows: Section II

introduces the relevant literature for recommender systems.

Then, Section III outlines our case study and shows how

information from various sources can be collected and used

to build an improved recommender system. In Section IV,

we perform extensive experiments and evaluate our approach

on a large real-life dataset. Additionally, Section V proposes

how to improve the timing of recommendations. Finally,

Section VI concludes the paper and gives an outlook on

possible improvements.

II. BACKGROUND ON RECOMMENDER SYSTEMS

Recommender systems are typically based on user feed-

back where a user expresses to what degree he or she likes a

product. A typical example of this are movie ratings where the

user gives a rating between one and five stars. Recommender

systems then try to estimate the number of stars for unwatched

movies and generate a list from most suitable to least suitable

recommendations.

Among the most popular approaches for recommender

systems are Content-based and Collaborative Filtering (CF)

approaches [2], [3]. Content-based approaches recommend

items that have similar properties as items that a user

previously liked. As an example, for movie recommendations,

a content-based recommender system could recommend other

movies of the same genre or similar actors. Collaborat-

ive Filtering approaches, however, recommend items that

users with similar preference liked. Therefore, this uses

the collective purchase patterns of users rather than item

properties. We focus on this approach, since it has generally
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i1 i2 i3 i4 i5
u1 3 4 4
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u3 5
u4 1 3 2 3

r̂2,3 = 3

(a) User-based CF

i1 i2 i3 i4 i5
u1 3 4 4
u2 1 ? 2 3
u3 5
u4 1 3 2 3

r̂2,3 = 3

(b) Item-based CF

Figure 1. K-Nearest Neighbour example using k = 1.

shown to produce more accurate results [4]. Famous retailers

and content providers such as Amazon and Netflix have

implemented such systems with great success [5], [6]. For

more information on recommender systems we refer to [2],

[7], [8]. An overview of the evaluation of recommender

systems can be found in [9].

In the following, the indices u and v are reserved for users

and i and j for items. When a user u rates an item i the

rating is denoted as ru,i and all ratings are stored in a large

but sparse user-item matrix. A rating prediction is denoted

as r̂.

A. k-Nearest Neighbour

An example of Collaborative Filtering is the k-Nearest

Neighbour (k-NN) approach [2]. The basic idea is to search

for “like-minded” users and use their rating of an item for

the prediction. This approach is usually referred to as user-

based Collaborative Filtering. More specifically, the algorithm

computes a similarity score s between users to identify the k
users with the most similar rating behaviour. The prediction

is then calculated as the weighted average of the rating from

these neighbours:

r̂u,i =

∑
v∈V su,v · rv,i∑

v∈V su,v
, (1)

where V is the set of k-nearest neighbours of u. Figure 1(a)

shows a simple example for k = 1. As an extension it is

also possible to include biases which factor in the average

rating behaviour of u and v:

r̂u,i = ru +

∑
v∈K su,v · (rv,i − rv)∑

v∈K su,v
. (2)

A problem with the user-based approach is that it requires

a similarity comparison between all pairs of users. This

is not scalable to a scenario of reasonable size due to the

large number of users and the complexity of computing all

pairwise similarities. However, a simpler formulation of the

same idea is possible by computing a similarity score between

items based on whether they have been rated similarly by

users (Figure 1(b)). This is called item-based Collaborative

Filtering and since the number of items is usually much

smaller than the number of users, it is computationally less

i1 i2 i3 i4 i5
u1

u2

u3

u4

u1

u2

u3

u4

i1 i2 i3 i4 i5
fi1
fi2

fu1
fu2

≈ ×

User-item Matrix User Factors xT
Item Factors y

Figure 2. Approximation of the user-item matrix using two user and item
factors.

demanding [10]. Again, the prediction is computed as the

weighted average of the rating from neighbouring items:

r̂u,i =

∑
j∈J si,j · ru,j∑

j∈J si,j
, (3)

where J is the set of k-nearest items of i. A popular approach

to compute the similarities between items or users is the

adjusted cosine similarity [3], [2], e.g., for item-based CF:

si,j =

∑
u∈U (ru,i − ru)(ru,j − ru)√∑

u∈U (ru,i − ru)2
√∑

u∈U (ru,j − ru)2
. (4)

where U is the set of users that rated both items i and j
and ru is the average rating of user u. Possible alternatives

are the closely related Pearson’s correlation coefficient or

Spearman’s rank correlation coefficient.

B. Singular Value Decomposition

One of the most popular algorithms for recommender

systems is Singular Value Decomposition (SVD). SVD is a

matrix factorization approach which can decompose the large

matrix of user-item ratings in two much smaller matrices

(Figure 2) [11]. Specifically, the idea is that there exist

some unknown factors that explain how a user rates an

item. These factors could be the colour of a product, genre

of a movie or aspects much more abstract and harder to

interpret. Subsequently, the user preference captures how

much interest a user has in that aspect. The user preference

xu and degree to which the item exhibits this property yi
can then estimate the rating using the inner product:

r̂u,i = xT
u yi. (5)

As a result, the prediction does not require the full user-item

matrix but only a user chosen number of latent factors for

prediction.

In order to obtain the latent factors, an optimization task

is used which minimizes the regularized squared prediction

error:

min
x∗,y∗

∑
ru,i∈R

(ru,i − r̂u,i)
2 + λ(‖xu‖2 + ‖yi‖2), (6)

where R is the set of all available ratings and λ a regular-

ization factor. While the first term minimizes the squared

prediction error, the second term prevents overfitting.
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As an improvement, biases are often introduced which

include whether users generally give higher or lower ratings:

r̂u,i = r + bu + bi + xT
u yi (7)

Here, r is the average rating of all users. The user and

item biases bu and bi capture whether user u or item i
generally receive higher or lower ratings than the average

user or item. Note that the squared user and item biases also

need to be added to the regularization term in Equation 6.

In order to obtain the latent factors, an optimization task

is used which minimizes the squared prediction error. The

optimization problem is often solved by using a stochastic

gradient descent optimization [11], [7], [8].

Thus far, all algorithms require that the user gave explicit

feedback about its preference in the past (such as movie

ratings). Ratings that are not available are assumed to be

missing. Recommender systems based on explicit feedback

are generally well studied and commonly used in practice.

This approach is not directly transferable to transactional

data since explicit ratings are often not available. In this

case, preference needs to be inferred from the user’s actions,

e.g., the purchase of a product. In this case, the rating ru,i
denotes the number of times a user purchased an item. If no

preference was observed, the rating for the item is assumed to

be zero. Alternatively, a binary preference value pu,i whether

the user purchased an item can be used [12], [4]:

pu,i =

{
1 ru,i > 0

0 ru,i = 0.
(8)

A key difference of this is that missing preferences are

now assumed to express disfavour. This causes the user-item

matrix to grow considerably in size and often contain billions

of entries. Traditional algorithms usually do not scale well

to such large matrices.

An extension of the SVD approach specifically for this case

was proposed in [4]. The authors utilize a binary preference

matrix and further introduce a confidence for each preference

value. The core idea is that if a user has shown interest in

an item several times, it is more likely that the preference

assumption is correct. The authors propose to encode this

confidence as

cu,i = 1 + αru,i, (9)

where α is a scaling factor, typically set to α = 40.

With these modifications, the SVD minimization task can

be written as:

min
x∗,y∗

∑
u,i

cu,i
(
pu,i − xT

u yi
)2

+ λ

(∑
u

‖xu‖2 +
∑
i

‖yi‖2
)
.

(10)

This formulation is very similar to the minimization problem

of traditional SVDs (cf. Equation 6) with the addition of the

confidence value. However, a key difference is that the optim-

ization task involves all possible user-item pairs and not only

the observed ratings since combinations where no preference

was detected are assumed to be zero. Considering that the

number of items and users in any reasonable real life scenario

will be several thousand each, the user-item matrix often

contains billions of entries. Traditional algorithms usually do

not scale well to such large datasets and optimization, e.g.,

using a stochastic gradient descent optimization, can be very

time consuming. The authors avoid this problem by noting

that the cost function becomes quadratic when user factors or

item factors are fixed. Therefore its global minimum can be

easily computed. As a consequence the authors propose an

Alternating Least-Squares (ALS) approach where user and

item factors are optimised alternatingly until they stabilize.

This vastly improves the training time.

C. Co-clustering

Co-clustering [13] is a simple alternative to k-NN. It

simultaneously attempts to identify groups of similar users

and items, called user-clusters Cu and item-clusters Ci. Based

on these groups, co-clusters are identified which relate users

and items. The underlying idea is similar to k-NN, where

similar users or items are first identified and their rating

is used to generate the prediction. In Co-clustering, the

prediction can be calculated from the average rating of the

assigned clusters:

r̂u,i = Cu,i +
(
ru − Cu) + (ri − Ci

)
. (11)

Here, Cu,i is the average rating in the co-cluster, Cu the

average rating in the user-cluster and Ci the average rating

in the item-cluster.

The cluster assignment strategy is similar to the popular

k-Means algorithm [14]. First, users and items are randomly

assigned to a user or item cluster. The co-clusters are formed

implicitly between all pairs of item- and user-clusters, e.g.,

all users in the first user-cluster and all items in the first

item-cluster form one co-cluster. The number of user-clusters

ku and item-clusters ki are user chosen and the number of

co-clusters is ku · ki. Afterwards, the cluster assignment for

users and items is iteratively updated such that the squared

prediction error is minimized.

III. OMNI-CHANNEL RECOMMENDER SYSTEM

In general, recommender systems based on explicit feed-

back have been well studied. However, less attention has

been given to implicit feedback where user preference needs

to be inferred. In the following, we first show how to

implement a recommender system based on purchase history.

We discuss important design decisions such as how to capture

the preference from the purchase history, how to handle

returns and whether to recommend individual products or

product categories. Afterwards, we turn to other data sources
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and show how to collect user preference and use it to improve

the recommendations.

The vast majority of recommender systems with implicit

feedback considers the usage of a service as an indication

of preference. As an example, [12] uses the purchase

history of customers and [4] uses the watching time of

television programs. In the following, we use the example

of purchase history but it is equally applicable to other

types of service delivery. The purchase history is typically

available as a long list of transactions which contain the

purchased items, quantity and date of purchase for a user.

For recommendations, it is necessary to transform this list

into a user-item matrix where rows denote a user and columns

an item. As a cell content, the sum of purchases aggregated

per user and item can be used.

Generally, this already allows to apply traditional recom-

mender approaches such as k-NN algorithms. However, a

problem is that there is no indication of disfavour with

this approach. Usually, the lack of disfavour is solved by

assuming that all missing user-item pairs are zero. This is

sometimes referred to as all-missing-as-negative [15], [12].

This is a strong assumption, since a lack of purchase could

also indicate that the user has not discovered the product yet

or not purchased it for another reason, despite a preference

for it.

Strictly speaking, purchases also do not necessarily indicate

a positive rating of the product. For example, customers might

regret their purchase and could even return it. However, a user

might also return products for other reasons, e.g., because

a piece of clothing was not in the correct size. For this

reason, we still consider the initial purchase as an indication

of preference. Returned products are usually stored as a

separate transaction with negative quantity. Therefore, we

ignore those transactions and only work on transactions with

positive quantities.

An additional problem is that implicit feedback is merely

an indication of preference rather than a rating value. This

means that there is no scale for the ratings and the values

can vastly differ between users and items. To mitigate the

lack of scale and its influence, the user-item matrix can

be transformed into a binary matrix of preference or no

preference. This has been shown to produce better results [12],

[4] which we could confirm during the development of our

approach. For this reason, we adopt this approach in our

algorithm. Note the special case of SVD for implicit feedback

using ALS (cf. Section II-B), where the algorithm uses a

confidence value for every user-item rating even with a binary

preference matrix.

Another important choice is whether to recommend

previously purchased items to a user. On the one hand,

recommender systems should help customers discover new

items. On the other hand, customers are known to repurchase

items, e.g., to replace a broken item or have multiple items in

the same design. This is particularly true for our case study in

the textile & home dećor business where customers purchase

the same item repeatedly in order to have a consistent

design. In our dataset roughly 8.5% of transactions are

repurchases of the exact same item. For this reason, we

allow recommendations of already purchased items.

Due to their complexity many recommender systems are

implemented on product categories which vastly reduces the

number of user-item pairs. However, individual products are

arguably more helpful to the user and can be much more

tailored to his or her preference. For this reason, we focus

on product-level in the following.

A. Conceptual Extension of Purchase History

While the purchase history of a customer can already

yield good recommendations, there is much more information

available in order to improve the recommendations. As an

example, when a user visits a product page on the website or

searches for a product in the online store, we can infer that

the user is interested in the products, even if no purchase

is made. Similarly, if a user clicks a link in a newsletter, or

likes a picture of a product in social media it is likely that the

user has an interest. These indicators can be extracted from

weblogs, external social media data, or newsletter click rates

and used for the recommendations. This approach can be

considered as an omni-channel recommender system since it

can cover all available data sources and channel information

in order to build an improved model [16], [17]. This allows

to collect much more information about the customer and

personalize recommendations better. In this approach, each

channel produces a set of preference indicators which can

be combined as shown in Figure 3. In our scenario, we use

the sum across all matrices, but it is also possible to weight

the information by importance. For example, the purchase

history could be considered more relevant than data from

social media.

In the following, we explain how to extract preference

indicators from all available data sources in our case study

of a retailer in the home furnishings and textiles sector.

The data contains more than 2.2 Million transactions for

13, 000 different products from June 2014 to December 2017.

Each transaction is characterized by its time of purchase,

quantity of items and where it was performed. Sales in

brick and mortar stores vastly outnumber online shoppers

which constitute only 2.8% of the total sales. In total, more

than 4.8 Million units of 13, 000 different products were sold.

Additionally, the retailer offers a loyalty program to customers

which we focus on here. Almost 800, 000 customers joined

the loyalty program and more than 500, 000 made a purchase

in our dataset. For these customers, additional demographic

information such as age and gender is available. Roughly

90% of loyalty members are female and the mean age of

customers is 49.6 years.
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i1 i2 i3 i4 i5
u1 1
u2 2
u3 1 2
u4 1 1

Purchase History
purchases

i1 i2 i3 i4 i5
u1 2s
u2 1v
u3 2s
u4 1v

Weblog
search s and visit v

i1 i2 i3 i4 i5
u1 1l
u2

u3 1l
u4 1l

1p
1l

Social Media
post p and like l

i1 i2 i3 i4 i5
u1

u2 1c 2o
u3 1c
u4

1o
1c

Newsletter
open o and click c

i1 i2 i3 i4 i5
u1 5 1
u2 2 4 2
u3 1 6
u4 1 2 1

Preference Matrix

(weighted)

sum

Figure 3. Example of preference collection from purchase history, weblogs, social media and newsletters with equal weighting.

B. Weblogs
These days, many retailers maintain an online store which

produces a large number of information, often captured as a

log file about the user’s browsing behaviour. This information

can be mined to improve the recommendation process. As

an example, online stores usually offer a search field where

customers can search for products or attributes of products

that they are interested in. This is a strong indication of

interest in a specific product or feature which can be used

to improve recommendations.
However, this approach comes with several challenges.

First, website visitors are generally anonymous and are only

losely identified by their IP-address or the user-agent of

their browser. This makes it difficult to associate an observed

search query with a specific customer. Only after a user

logs in or makes a purchase, it is possible to associate a

real customer with the browsing session. To overcome this

problem, websites typically use HTTP-cookies which are

placed on a visitors machine and are automatically transferred

to the website upon visit. In our scenario, we can place a

cookie with a unique identifier on the visitors machine and

associate that identifier with a user account upon login. This

allows to uniquely identify visitors even if they are not logged

in until the cookie is removed.
As a second problem, it is necessary to identify products

that match the search query of the user. Ideally, we can

use on the built-in search algorithm of the website and use

the results to identify matching products. Unfortunately, the

search algorithm and results of the website are not available

in our case. Therefore, it is necessary to match the search

query to the available products separately, e.g., by using a

string matching approach.
A natural choice to compare the similarity of strings is the

Levenshtein distance [18]. The Levenshtein distance is the

minimal number of insert, delete and replace operations that

is required to transform one string X into another string Y .

However, it is not directly applicable in our scenario since it

does not handle strings of different lengths or different order

of words well. Therefore, we use a partial string matching

strategy called token set ratio [19]. The core idea is to

tokenize the string into individual words and split them

into different sets: an intersection and two remainders. Each

set is sorted alphabetically in order to handle cases where

words are in different order. Specifically, the string t0 is

the ordered intersection of words in X and Y . Based on

this, t1 and t2 are the string t0 concatenated with the sorted

remainder of X or Y respectively:

t0 = sort(X ∩ Y ) (12)

t1 = t0 + sort(X \ t0) (13)

t2 = t0 + sort(Y \ t0) (14)

For each pair, a ratio of relative similarity is computed as

2M/T where M is the number of matches and T the total

number of characters. The final matching score can then be

calculated by taking the maximum similarity of all pairs. The

underlying idea is that the similarity is large if X makes up

a larger portion of Y or if the remainders are similar.

As a simple example let us assume that the search query

is X = “red towel” and one of the product names is Y =
“green towel”. In this case the three strings are as follows:

t0 = towel, t1 = towel red, t2 = towel green. The pairwise

similarity scores yield sim(t0, t1) = 0.71, sim(t0, t2) = 0.62,

sim(t1, t2) = 0.80. The similarity between t1 and t2 for

example is calculated as (2 · 8)/(9 + 11) where 8 is the

number of matching characters “towel re” and the length

of the strings is 9 and 11 respectively. Therefore, the final

similarity score is 0.8, i.e. the maximum of the three pairs.
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To decide whether a product matches the search query, we

compare its similarity to its product name, category, and

description and employ a similarity threshold of 80%. Since

our approach performs a partial string matching, we are not

confined to compare product names. Instead, we also look

for descriptions and product categories that match the search.

If the similarity of the search query with any attribute is

sufficiently high, we assume a preference for that product.

In our dataset, a total of 9 Million weblogs are available,

recorded between June 2017 and February 2018. The weblog

contains all HTTP GET requests made to the website during

this period and allows to draw conclusions about product

pages a user visited or what the customer searched for. Note

that despite the rather short time-period, weblogs form one

of the largest data sources available in our study. A total

of 16, 000 weblogs could be matched to a specific customer

of the loyalty program by identifying the cookie on their

machine. In our dataset, search queries can be identified

from the requested URL since each search query is prefixed

using “/q=” after the toplevel domain. This allowed us to

identify 180, 000 different search queries and 687 of them

can be attributed to a specific customer of the loyalty program

by identifying the cookie on their machine. For all search

queries, we attempt to match the search query to one or more

products in our database using the above string-matching

scheme and add the identified preferences to our preference

matrix. An exemplary search query, the corresponding log

file and similarity to products is shown in Figure 4.

Additionally, weblogs can also be analysed to observe

click-streams and product pages a customer visited. The

underlying assumption is that if a user looked at the product

page, he or she has a general interest in that product. In an

ideal case, it should be known which products are associated

with a specific URL. Unfortunately, this information is not

available in our dataset which makes it necessary to match

the URL against products in our database again (Figure 5).

For this we extract the name of the requested HTML site and

utilize the string matching scheme from above. If the name

matches an entry in our database, we again record it as a

preference for that product and add it to the user-item pair

in the preference matrix.

C. Social Media

On top of online stores, many companies maintain a social

media account on platforms such as Facebook, Twitter or

Instagram. Typically, these accounts post news about products,

run marketing campaigns, engage with users and provide

customer service [20]. Social media platforms usually come

with a feedback system such as likes, shares or comments.

This makes them a valuable source to identify preferences

of the users. If the post mentioned a specific product, it can

also indicate preference for that product. Assuming that a

company posted a facebook picture of a new product and

the user liked and commented the picture, there is a high

probability that the user is interested in the product.

To capture the user preference from such information, it

is first necessary to identify which product was mentioned

in a post. In an ideal case, this information is stored by the

social media team and readily available. Since this is not

available in our case, we propose several strategies. The most

straightforward approach uses text-based posts or description

of videos and photos. For this type we can use the text to

perform the partial string matching strategy from above. The

same strategy can be used for videos and pictures which

usually come with description texts.

A special form of this is possible on Facebook, where

products in a photo can be tagged by the company. If a user

selects one of the tagged products, a page with item price

and link to the online store is shown. For this special case we

use the Facebook-API and query the name of the tags. These

are usually abbreviations of product names and can be used

for string matching. Additionally, companies sometimes post

links to their website, e.g., to product categories or specific

product pages. These links can be analysed with the same

strategy as previously described for weblogs.

As before, another challenge is to associate the largely

anonymous accounts in social media with real customers

in the database. To solve this, a simple name matching

strategy can be used. In our dataset, users are identified

based on a match of their first and last names. Note that

this is bound to miss some cases due to the large number of

accounts with fake, abbreviated or modified names on social

media. Additionally, it might match customer or social media

accounts with popular names multiple times. More elaborate

string matching could try to counter name obfuscations with

the risk of misidentifying users and could prevent double

matches. We apply the described approach to a total of 5, 000
user comments and 120, 000 user likes from the company’s

Facebook page. The posts range from the start of the account

in 2011 until the end of 2017.

D. Newsletters

More indicators of preference can be obtained from

interest in newsletters. Many companies regularly send out

newsletters either to inform customers about new products or

provide discounts as an incentive to make a purchase. They

are typically sent by email and their usage can give feedback

about what customers are interested in. The underlying idea

is that if a customer clicks a link in a newsletter, he or she

is likely to have a preference for the advertised item.

Our dataset contains information about almost 800, 000
newsletters sent roughly every 2–7 days between June

and July 2017. 176, 000 mails were opened and 29, 000
click-throughs were recorded. Unfortunately, no detailed

information is available in our dataset regarding which

products were advertised in a newsletter. The only available

attribute is the header of the email. While we recognize that
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red towelUSER SEARCH: GET/ www.url.com/q=red towelSERVER LOG:

Similarity Item Name

100 032 Red Towel
80 033 Green Towel
25 126 Blanket

PRODUCT TABLE:

Figure 4. Matching search queries to product information.

towelsVISITED CATEGORY: GET/ www.url.com/towels.htmlSERVER LOG:

Sim Item Name

67 032 Red Towel
59 033 Green Towel
15 126 Blanket

PRODUCT TABLE:

Figure 5. Matching page visits to product information.

2011 2012 2013 2014 2015 2016 2017 2018

Purchases

Weblog

Facebook

Newsletter

WiFi-logs

Figure 6. Timeline of available data sources.

this makes it difficult to relate newsletters to products, we

match the header with the string matching from above. In

the future, the content of newsletters should be stored more

consistently to improve this approach.

IV. EVALUATION

A. Experimental Setup

The goal of our recommender systems is to recommend

the most suitable products per user based on the available

information. Figure 6 summarizes all data sources and

available time-ranges in our dataset. As indicated, the largest

overlap of available data is between June 2017 and January

2018. In the following, we perform our experiments on this

time-span since it is most relevant for our approach.

To evaluate a recommender system, we predict the user

preference for every user and item combination in our dataset.

We can then order the predicted scores from most suitable to

least suitable product per user to obtain a list of recommend-

ations. We evaluate Singular Value Decomposition (SVD),

its extension using Alternating Least Squares (ALS), Co-

Clustering as well as Item-based CF. For SVD we use 100

latent factors, 20 epochs and set the parameters γ = 0.005
and λ = 0.02. Note, to achieve a faster runtime of the

SVD approach we parallelized its execution by removing any

restrictions regarding the access of shared data structures to

store the user and item factors. This allows race-conditions

but during our tests with smaller datasets, the results show

no negative impact on the quality of the results. For Co-

Clustering we use 5 user and item clusters and 20 epochs

and for Item-based CF we use k = 10 Nearest Neighbours.

These settings are fairly standard but parameter tuning might

improve the algorithms further. For comparison, we also

include a baseline algorithm which randomly samples values

with the same probability as observed in the training set.
To validate the list of recommendations we use a train-and-

test strategy where a training set is used to train the model

and a test set is used to evaluate it. In traditional supervised

machine-learning, the entire dataset can be split in order to

achieve this. For recommender systems, however, the full

user-item matrix needs to be available. As an alternative, a

popular strategy masks certain elements from the user-item

matrix by setting them to zero. For purchase data this means

that some of the purchases are removed from the training

set. The algorithm is then trained on this data and asked to

generate a list of recommendations for every user. Ideally,

the purchases that were masked from the training data are

then recommended as the most suitable items.
An example of this train-and-test strategy is shown in

Figure 7. In the following, we randomly mask 20% of the

data set. Even though we use a random masking strategy,

we observed the results to be stable regardless of which

ratings were masked. Other approaches, such as masking all

purchases after a specific date are equally applicable.
Recommender systems based on explicit feedback can be

evaluated by comparing the rating estimate with the true

rating. As an example, they try to estimate the number of

stars a user would give to a movie. Divergence from the

true rating can then be measured by using the Root Mean

Square Error (RMSE) or the Mean Absolute Error (MAE).

Algorithms that minimize either measure are desirable.

Unfortunately, this approach is not directly transferable

to implicit feedback where only preference indicators are

available. As a consequence, the values either have no fixed

scale or are binary which makes precision-based metrics

hardly applicable [4].
Instead, the quality of recommendations can be evaluated

by determining whether more suitable items are more likely

to be recommended. In our setup, we employ the approach
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i1 i2 i3 i4 i5
u1 4 1
u2 2 3 2
u3 1 6
u4 1 2 1

i1 i2 i3 i4 i5
u1 1 0 0 1 0
u2 1 0 1 0 1
u3 0 1 0 1 0
u4 1 0 1 0 1

i1 i2 i3 i4 i5
u1 1 0 0 1 0
u2 1 0 0 0 1
u3 0 0 0 1 0
u4 1 0 1 0 0

i1 i2 i3 i4 i5
u1 1 0 0 1 0
u2 1 0 1 0 1
u3 0 1 0 1 0
u4 1 0 1 0 1

User-item Matrix Fill Zero & Binarize

Train set (20% masked)

Test set

Figure 7. Masking strategy in our evaluation. All ratings are binarized and missing ratings are assumed to be zero. The training set masks some ratings to
be zero.

Table I
EXAMPLE OF USING THE PERCENTILE RANK OF CORRECT

RECOMMENDATIONS AS A QUALITY MEASURE.

Product ranku,i ru,i ru,i · ranku,i
Red Towel 0% 1 0%
Green Towel 3% 1 3%
Blue Towel 6% 1 6%

.

.

.
Red Blanket 97% 0 0%
Blue Blanket 100% 0 0%

from [4] and determine whether items of interest rank higher

in the list of recommendations. In this evaluation strategy,

ranku,i denotes the percentile-rank of an item in the list of

recommendations. ranku,i = 0% means that a product is the

first item of the recommendation list, i.e. deemed most suited

for the user, and ranku,i = 100% that it is the least suited

for the user. To evaluate all recommendations, the weighted

average of percentile-rankings can be used.

rank =

∑
u,i ru,i · ranku,i

ru,i
(15)

The underlying idea is that if a customer has shown interest

in a product, we want that product to rank high in the list

of recommendations. An example of this idea is shown in

Table I where ru,i is the true rating taken from the test-set,

i.e. whether the user purchased the item. By multiplying it

with the respective percentile-rank, we can assess whether

good recommendations rank higher in the list. A good

recommendation algorithm will therefore yield a lower rank,

whereas a random algorithm will yield values close to

50%, i.e., placing the relevant items in the middle of the

recommendation list.

Only Purchases Omni-Channel
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Figure 8. Boxplots of item ratings per user on a logarithmic scale using
purchase data as well as all available sources.

B. Results

In our experimental evaluation, we aim to show that our

approach is able to extract better indication of preference from

the user than traditionally available in the purchase history.

Figure 8 compares how many item-ratings are available per

user for the traditional approach using purchase history and

our omni-channel approach. It is obvious that we were able

to extract vastly more preference indicators which allows

us to make more tailored recommendations. For some users

in particular, a lot more information could be gathered as

highlighted by the increased number of outliers in the boxplot.

In addition, there are fewer customers where no information is

available as shown by the positive shift of the lower whisker.

Note that this also includes users which have not made a

purchase in the past and would usually be unknown to the

recommender system. Figure 9 highlights how much each

channel contributed to the improved collection of preference

indicators. In total 3.87 million preference indicators could

be collected in our approach which is almost 6 times more

than from purchase data alone. 1 Million of these preferences

were previously unknown, i.e., zero. The most information

could be extracted from the website visits which we also

believe to be among the more accurate channels.
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Figure 9. Preference indicators per channel.
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Figure 10. rank measure for all evaluated algorithms.

Additionally, we want to validate that the algorithms

are recommending the right products to customers. For

this, Figure 10 shows the rank measure for all evaluated

algorithms. The results show that SVD using ALS yields the

best recommendation result and outperforms all remaining

algorithms with rank = 7.76%. This is a very good result

and shows that the vast majority of relevant items also

rank high in the recommendations list. As expected, the

baseline algorithm yields roughly rank = 50% by randomly

recommending items. While traditional SVD shows the

weakest performance in our study, its rank is still better

than random guessing.

Item-based CF yields slightly worse results than SVD

using ALS but takes considerable longer to compute. To

highlight this, Figure 11 shows the training time of each

algorithm. Since we parallelized all algorithms we show the

total runtime on all CPUs, including some parallelization

overhead. Again, SVD using ALS is the fastest of the tested

algorithms and vastly outperforms traditional SVD and Item-

based CF.

V. TIMING OF RECOMMENDATIONS

While recommendation accuracy is important, the timing

of a recommendation is also of interest. For example, there

is little value in recommending winter clothes during the

summer and there are times where a customer is more

welcoming to recommendations. One way to improve the

timing is by recommending products to customers who seem

to have interest in the brand. For example, when a user posts

SVD (ALS)
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Baseline
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5,000
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0
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Figure 11. Training time for all evaluated algorithms.

on social media or regularly opens newsletters, it is likely

that the customer enjoys the products. It is a good idea to

target these users in the recommendation process.

Another way to improve the timing is to detect when

customers visit a store but leave without purchase. This could

indicate that the user was interested but did not find a suitable

product. This can be easily done in the online store but is

also possible in brick and mortar stores. For this, the stores’

WiFi routers can be configured to monitor WiFi probe and

authentication requests. Such requests are sent from devices

such as mobile phones in order to identify whether there is

a known network available. These requests allow to identify

MAC-addresses of all devices in close proximity to the store.

Note that this practice might be subject to regulations in

some legislatures.

In order to match a MAC-address with a specific customer,

a simple matching scheme can be used. When a loyalty card

is used while a MAC-address is in proximity, it is more likely

that the device belongs to the customers. If this combination

of MAC-address and loyalty card occurs repeatedly, it can

be assumed that the device belongs to the customer. Our

dataset contains a total of 4, 800 MAC-addresses that could

be associated with a customer. When a customer is now

recognized in the store but leaves without purchase, it can

be a good opportunity to trigger a recommendation and send

the customer a voucher or advertisement for products that

are most suitable.

VI. CONCLUSION

Traditionally, recommender systems use the the purchase

history in order to recommend suitable products. In this

paper, we have shown that it is possible to use additional

information such as online search behaviour, website visits,

newsletter open and click rates as well as likes and comments

from social media data in order to obtain better indication

of preference. In a real-life case study of a retailer we were

able to obtain almost six times more preference indicators,

many of which were previously unknown. Our approach also

allows us to make recommendations for new customers and

thus can remove the usual cold-start problem of recommender

systems.
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We demonstrate how to infer preference from each channel,

e.g., by analysing weblogs or crawling social media data.

On top, we also propose several strategies on how to time

recommendations, i.e. when to send recommendations to the

customer. Our results show, that the recommendations are

very accurate. Nevertheless, the performance measurement

of recommender systems remains difficult. We used standard

measures to ensure that the system recommends items

that we deem interesting to the user. However, ultimately,

recommender systems need to be evaluated in practice where

turnover rates are compared for different strategies.

An open challenge remains the identification of customers

across the different channels. The current approach is based

on string matching of social media names or HTTP-cookies.

These approaches are prone to errors and users might be

misidentified, e.g., because of similar names. Additionally,

it is sometimes difficult to link the user behaviour to their

preference. For example, it can be difficult to attribute a like

on an image to one specific product, e.g., because multiple

items are shown in the image. Additionally, other sophist-

icated string matching approaches need to be considered in

the future. Finally, other types or recommender systems such

as hybrid or content-based approaches could be explored.
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