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Abstract—Receiving timely and relevant security information
is crucial to maintaining a high-security level on an IT infras-
tructure. This information can be extracted from Open Source
Intelligence published daily by users, security companies, and
hackers. In particular, Twitter has become an information hub
for obtaining cutting edge information about many subjects,
including cybersecurity. This work discusses the design of a
classifier model for a Twitter-based threat monitor for generating
a summary of the threat landscape related to a given monitored
IT infrastructure. Since the classifier is a crucial element of the
processing pipeline that constitutes the threat monitor, its archi-
tecture, topology and hyper-parameters must be properly selected
to achieve high true positive and true negative classification rates.
Our experimental work considered two architectural approaches:
a single model for the whole IT infrastructure or an ensemble of
models, one for each of several parts of the infrastructure. Within
this scope we tested one linear (support vector machine) and one
non-linear (multi-layer perceptron) modelling technique. Finally,
several model design variables, hyper-parameters and learning
parameters were selected by grid-search.

Index Terms—Threat discovery; OSINT; Twitter; Machine
Learning.

I. INTRODUCTION

A security analyst must be aware of the latest develop-

ments regarding updates, patches, mitigation measures, vul-

nerabilities, attacks, and exploits to protect an infrastructure

adequately. Awareness should raise within the Security Oper-
ations Center (SOC) through Security Information and Event
Management (SIEM) software, thereby allowing correlating

the latest information available with infrastructure events.

There are two primary ways of obtaining cybersecurity

news. One is to purchase a curated feed from a specialised

company such as SenseCy [2]. Another, is to collect Open
Source Intelligence (OSINT) publicly available [25] from

various sources on the internet (e.g., Threatpost [9]). Although

there are numerous so-called threat intelligence tools (e.g.,

SpiderFoot [8], IntelMQ [4], and AlienVault OTX [1]), their

main focus is on collecting security-related OSINT from a

wide variety of sources. At most, they apply simple keyword-

based queries and filters to decrease the big volume of

information but do not provide more elaborated processing

or analysis. To overcome the limitations of keyword-based

methods these tools have to be adapted or extended, config-

ured, and possibly, complemented by the end user. However,

recent work [17, 23, 29] demonstrates that different types

of useful information and Indicators of Compromise (IoC)

can be obtained from OSINT if more sophisticated analysis

techniques are applied. These results highlight the gap between

the current capabilities of existing OSINT-based tools and the

potential that OSINT can raise.

To fill this gap, we considered the problem of designing an

OSINT-based tool to keep SOC analysts aware of the threat

landscape against the infrastructures under their responsibility.

Besides choosing sources and collecting OSINT, this requires

selecting only the information related to the security of the

monitored infrastructure assets and joining identical infor-

mation published by different sources. Given the volume of

information, this is a time-consuming task for which security

analysts have a limited time budget, even though the quality

of their work depends on this awareness.

To this end, we developed a Twitter-based streaming threat

monitor called SYNAPSE [10]. SYNAPSE’s pipeline is com-

posed of filtering, feature extraction, binary classification,

aggregation, and generation of indicators of compromise. More

specifically, an automated tool gathers tweets from security-

related accounts, a supervised machine learning technique

selects those relevant for the specified infrastructure being

monitored, and a clustering method avoids presenting repeated

or unnecessary information.

Twitter was chosen for two main reasons. First, Twitter is

well-recognised as a relevant source of short notices (almost

in real-time) about web activity and occurring events [3].

Second, the limited size of a tweet makes it simple to process

through general-purpose machine learning approaches, which

enable low error levels across multiple domains of application.

Furthermore, although short, tweets provide enough elements

to categorise their content, as well as links for more detailed

material.

Previous work to gather cybersecurity information from

Twitter also include machine learning techniques to deem

information as relevant. Mittal et al. [19] use a knowledge

base created from security concepts, to evaluate if a tweet

is relevant for cybersecurity. Ritter et al. [20] search Twitter

for occurrences of three specific topics: DoS attacks, data

breaches, and account hijacking; tweets are selected through

an expectation-regularization classifier [28]. Trabelsi et al. [26]

cluster tweets by subject; threats not referred by NVD are

considered novel, and handled like zero-day vulnerabilities. Le

Sceller et al. [15] designed a framework that collects tweets

on keyword basis, but is capable of extending the keyword

set automatically. This framework employs various techniques,

including clustering and local sensitive hashing [13]. Dionı́sio
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Fig. 1: The architecture of the Twitter-based threat monitor [10]. Collected tweets pass through the various stages and those

classified as relevant are aggregated and delivered to SOC analysts.

et al. [12] used deep learning techniques to detect and extract

security-related information from tweets. Finally, Sabottke et
al. [23] show that information about exploits are published on

Twitter (on average) two days before they are included in the

NVD, selecting data using Support Vector Machines [11].

This paper focuses on selecting the architecture of

SYNAPSE classification stage and on the design of the the

classification models employed, to obtain high true positive

and true negative classification rates. Besides model design

variables and hyper-parameters, two architectural choices were

considered: whether to employ a linear or a non-linear clas-

sification technique, and whether to describe the monitored

infrastructure as a whole or divide its elements into smaller

parts, each part having its own classifier. Interestingly, the

linear model performed better when considering the whole

infrastructure, while the non-linear one achieved better results

as an ensemble. In both cases, the classifiers achieved True

Positive and True Negative Rates (TPR and TNR) around 90%.

II. SYNAPSE’S PIPELINE

Figure 1 presents SYNAPSE architecture and data pro-

cessing stages: tweet gathering, filtering, feature extraction,

classification, clustering, and IoC generation. The following

sections describe each stage.

A. Data Collection

The data collector module requires a set of accounts,

from which it will collect every tweet posted using Twitter’s

stream API. These accounts can be from security analysts

and companies, vendors, hackers, researchers, among others.

They are chosen considering the likelihood of users tweeting

about the security of elements belonging to the monitored

IT infrastructure. Since most security analysts already follow

OSINT sources (including Twitter accounts), it is just a matter

of including them in the account set to tailor and improve

OSINT coverage.

We opted to collect tweets from selected accounts instead

of using a keyword-based approach since the latter is likely to

retrieve large amounts of irrelevant information, an approach

already in use in the literature [24]. For instance, tweets with

the word “windows” include all Windows-related topics (the

OS) and all tweets referring glass windows, besides other non-

security related topics. By collecting tweets only from selected

security-related accounts, a more substantial fraction of tweets

are related to IT security, leaving the focus on filtering tweets

not mentioning threats related to the specified IT infrastructure.

B. Filtering

Despite the account-based collection approach, most likely

the collected data will include tweets unrelated to the infras-

tructure under the analyst’s care. These have to be dropped by

a filter. The filtering approach assumes that a tweet referring a

threat to a particular IT infrastructure asset has to mention

asset properties. Therefore, a second input is required: a

set of keywords describing the assets of the monitored IT

infrastructure. Only tweets that include at least one of the

keywords will pass the filter. Keywords further restrict the

scope of the security events, hence decreasing the number of

irrelevant tweets beyond the filter.

To maximize the effectiveness of the tool, the keywords

defining the monitored assets must be as complete as possible.

Keywords can, in part, be learned from logs and network traffic

within the infrastructure, but have to be complemented with

slang and other informal terms commonly used by IT profes-

sionals. Although that work is out of the scope of this article,

this process may be substantially automated. For example, if

the analyst is in charge of securing a Linux cluster running

virtual machines to serve a web service with a database,

the keyword set could be {linux, ssh, virtualbox,
vbox, mysql, apache http, php}. In principle, the

more complete and specific the keyword set, the more effective

the filtering process will be. For example, instead of using only

“Linux”, the analyst could also specify the specific distribution

in use.

C. Pre-processing and Feature Extraction

Pre-processing aims to normalise the tweet representation.

First, all characters are converted to lower case, and stopwords

and hyperlinks are removed (these offer little information since

they are shortened URLs). Numbers, dots, and hyphens are

replaced by their textual representation (e.g., “2” to “two”),

as these are relevant to distinguish software versions (e.g.,
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Mozilla Firefox 4.5.1-2). Finally, all non [a-z] characters

are removed. For instance, after pre-processing, the tweet,

#Oracle #Linux 6 / 7 : Unbreakable
Enterprise kernel (ELSA-2016-3573)
https://t.co/vLTel8NodG #Nessus

becomes:

oracle linux six seven unbreakable
enterprise kernel elsa hyphen two
thousand and sixteen hyphen three
thousand five hundred and seventy
three nessus

Before classification tweets must be converted to a numer-

ical format, thus becoming suitable for supervised learning

binary classification techniques. This work uses the well-

known Term Frequency - Inverse Document Frequency (TF-

IDF) method [16]. TF-IDF computes weights to words (fea-

tures) based on their occurrence frequency in each specific

document and group of documents considered. The weight of

a word increases with its frequency of occurrence in a single

document but is scaled down by the frequency of occurrence

in all documents. By mapping each consecutive word token

to a corresponding vector position, tweets are converted to a

constant size, zero-padded, TF-IDF numeric vector. Finally,

to limit the size of the vector we employ the hashing trick

technique [27].

D. Classification

For the classification of tweets according to their secu-

rity relevance, two classifiers were tested: Support Vector

Machines (SVM) [11] and Multi-Layer Perceptron (MLP)

Neural Networks (NN) [21, 22]. The SVM is a broadly-

used classifier achieving good results across a multitude of

application domains. In this paper we consider the linear

version of SVM. The MLP is a well-established and frequently

used NN architecture that has a long track record of good and

consistent results over a vast number of classification tasks.

E. Clustering

An aggregation phase should be included in threat intel-

ligence tools to remove duplicate information and provide a

concise summary of the current threat landscape. To perform

such summarization we have proposed [10] a clustering al-

gorithm. Clustering is a data-exploration technique designed

to find groups of similar items within a set, and therefore

is a natural choice for the problem of finding tweets dis-

cussing the same threats. SYNAPSE clustering stage relies

on a stream clustering methodology supported by the k-means

algorithm [18]. k-means is a a widely used algorithm that has

provided good efficiency and empirical success over the last

50 years [14].

F. MISP Compatible IoC Generation

After the clustering phase, the clusters of tweets should

be transformed into the IoC format to allow their inclusion

name keywords
A oracle, cisco

B
google chrome, chrome, internet explorer,

firefox, microsoft edge, edge
C wordpress, joomla, wp

D
microsoft windows, ms, linux,

operating system, operating systems
ABCD A+B + C +D

TABLE I: The infrastructure designed for tweet collection and

filtering and its subdivision in four coherent parts.

in SIEMs or threat intelligence platforms. There are several

standards for sharing IoCs, such as STIX [5] or MISP [6]. The

format must be extendible and adaptable as tweets are unstruc-

tured and contain unpredictable content. For these reasons the

MISP format has been selected to generate IoCs. Moreover, it

can be easily converted into other standard formats like STIX.

To ease the correlation of the collected threats within the

threat intelligence platforms, events should be categorized

using tags, added according to a set of threat categories. The

categories can be adapted from existing taxonomies, such as

those from ENISA and VERIS for cyberthreats [7].

III. EXPERIMENTAL SETUP

In this section we describe the experimental work that was

carried out design and validate SYNAPSE’s classifier. The

code is written in Scala using the Apache Spark Framework1

pre-built with Hadoop. We chose Spark as their data-structures

are scalable and designed for large datasets. Besides, Spark

includes a scalable machine learning library called MLlib2

including all ML-based algorithms used in this work.

A. Infrastructure definition

In a large organization the IT infrastructure is composed of

many hardware and software assets. By using risk analysis

the analyst selects a subset for which OSINT should be

collected, filtered and summarized. The diversity of assets

that may be selected in a large and complex organization,

raises one question related to the classification stage: is it

better to have one classifier covering the whole infrastructure

being monitored, or is it preferable to have multiple classifiers

focused on specific parts?

Considering this question, the hypothetical IT infrastructure

designed for the experimental work was divided in four parts

as presented in Table I. The table presents the keywords that

are used in the filtering stage. The last row considers the case

where one single classifier will be fed by tweets related to any

of the four infrastructure parts.

Part A is a simple representation of Cisco and Oracle prod-

ucts, part B considers the browsers used in the organization,

part C relates to content management systems deployed, and

finally part D considers the operating systems used.

1http://spark.apache.org/
2https://spark.apache.org/docs/latest/mllib-guide.html
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TABLE II: Datasets collection and labeling details.

Dataset: D1 D2 D3

Time period 01/11/2015 01/04/2016 15/05/2016
(from/to) 01/04/2016 15/05/2016 10/07/2016

Account sets S1 S1, S2
Num. tweets 71024 57579 66608

Pos. Neg. Pos. Neg. Pos. Neg.
Related to A 556 514 177 249 502 256
Related to B 217 497 86 446 420 362
Related to C 486 606 138 900 425 303
Related to D 441 691 138 2697 336 1232
Rel. to ABCD 1697 2008 536 4292 1680 2153

TABLE III: Sets of accounts used to create the datasets.

S1 Accounts: inj3ct0r, TrustedSec, Anomali, briankrebs, Secunia, ex-
ploitdb, alienvault, slashdot, dstrom, Info Sec Buzz, vuln lab, threat-
intel, dangoodin001, ivspiridonov, ThreatFeed, pikisec, SANSInstitute,
johullrich, drericcole, F1r3h4nd, MaldicoreAlerts, USCERT gov, gcluley,
hal pomeran, SecurityWeek, SecurityNewsbot, sans isc, e kaspersky
S2 Accounts: TenableSecurity, securitywatch, securityaffairs,
zer0element, notsosecure, CyberExaminer, SCMagazine, DMBisson,
lennyzeltser, IT securitynews, teamcymru, WordPress, MicrosoftEdge,
JoomlaTips, sjzaib, SecurityMagnate, Cisco, Dell, linuxtoday,
securityninja, cyberopsy, OWASP Java, WPScan , d plusk, threatpost,
Rootsector, Microsoft, linuxfoundation, ChidoDike, Sec Cyber,
ptracesecurity, msftsecurity, LinuxSec, hack3rsca, CiscoSecurity,
NytroRST, joomla, Windows, crackerhacker00, fstenv, HPE Security,
googlechrome, wordpressdotcom, packet storm, RokaSecurity, Oracle,
firefox, wpbeginner, YoKoAcc, SecurityCrap, jasonlam sec, threatmeter

B. Tweet collection

Three datasets were collected during three periods of time

as shown in Table II, where the collection period, the sets

of accounts used, the number of positive and negative tweets,

and the distribution over the infrastructure parts, may all be

observed.

After being collected the tweets were visually inspected

and manually labeled as positive (mentioning a threat to a

given part of the IT infrastructure) or as negative, thus creating

labeled data sets suitable for supervised learning approaches.

Four rows in Table II identify the numbers of positive tweets

related to each of the infrastructure parts considered. The

number of ABCD’s positive tweets is less than the sum of the

parts because tweets mentioning more than one infrastructure

part were not duplicated when the tweets were merged.

As shown in the third row, two sets of accounts, S1 and

S2, were used for tweet collection. The accounts per set are

identified in Table III.

C. Feature extraction

We used Spark’s implementation of TF-IDF using default

parameters, except for the feature vector size. In order to find a

suitable vector size to describe the tweets, eleven values were

tested: {30, 50, 80, 100, 200, 300, 500, 750, 1000, 1500, 3000}.

D. Classification

As explained in Section II-D, two classifiers were employed:

a linear SVM and an MLP Neural Network. In their design,

relevant design variables and parameters were varied in order

to find the best approach for this application.

Configurations A B C D ABCD

SVM
Feature size 3000 3000 3000 3000 3000

Step size 0.5 0.05 0.2 0.01 0.05
C 0.5 1.5 5.0 1.5 5.0

MLP
Feature size 1500 3000 3000 3000 3000
Num. layers 4 5 3 7 5

Neurons/layer 5 5 10 10 7

TABLE IV: The best configurations obtained for each classifier

and dataset.

For the SVM we varied C, the regularization parame-

ter, within {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5}, and the step

size, a parameter for the Stochastic Gradient Descent (SGD)

method used to train the SVM, within {0.1, 0.5, 1, 1.5, 2, 5}.

For the MLP, we varied the number of layers from 2 to 8, and

the number of neurons per layer within {5, 7, 10, 12, 14, 16, 18,
20}. The models were trained using dataset D1 and evaluated

by performing 10-fold cross-validation. In both cases the limit

on the maximum number of training iterations was set to 100.

IV. RESULTS

Figure 2 shows Pareto curves for all the tested configura-

tions. Each point shows average values obtained by the various

configurations over the 10-fold cross-validation procedure. The

Pareto front is shown with lines connecting the dominant

configurations in terms of True Positive Rate (TPR—x-axis)

and True Negative Rate (TNR—y-axis), for both types of

classifiers. For infrastructure part A (oracle, cisco), it is possi-

ble to see that the SVM solutions dominate the MLP ones.

A possible explanation is that this infrastructure generated

a simpler dataset, whose patterns were easily captured by a

linear classifier, but not complex enough to properly train the

MLP NN configurations that may have over-fitted the data.

For the other infrastructures, each of the techniques dominate

one of the evaluation metrics (infrastructure parts B and C),

or the SVM clearly dominates TNR while the TPR results are

comparable (infrastructure part D and complete infrastructure).

The points highlighted by a larger circle in the top-right of

the figure are the Pareto-optimal configurations presenting the

best balance between TPR and TNR (smallest distance to the

optimum). Table IV presents these configurations, revealing

that there is a clear advantage in using high-dimensional fea-

ture vectors. Regarding other design variables or parameters,

the results exhibit more variability.

The results presented next were obtained by the Pareto

optimal solutions described in Table IV. For that purpose,

SYNAPSE’s classifier was evaluated by using datasets D2
and D3. These datasets have tweets posted after those in the

training data set (D1) and include information posted by an

additional set of accounts (S2), not considered in the training

stage. This evaluation methodology embodies the ideas that in

a real situation, after being trained, models will classify data

from future events, and that over time new accounts may be

added (or removed) to the system.

Considering that cross-validation was employed during the

model selection work, it should be noted that the selected
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Fig. 2: The Pareto curves for SVM and MLP after 10-fold cross validation using dataset D1, for infrastructures A, B, C, D

and ABCDE, respectively.
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Fig. 3: SVM (top) and MLP (bottom) classifier results for infrastructures A, B, C, D, ABCD, and the classifier ensemble.

model configurations were retrained using the complete dataset

D1. The feature vectors corresponding to tweets in D2 and

D3 were generated using the TF-IDF model determined using

dataset D1. This guarantees that TF-IDF weights attributed to

words in D2 and D3 will be coherent with those employed to

train the classifiers.

Figure 3 shows the performance of the best SVM and MLP

classifiers measured in terms of TPR and TNR, considering

also the average result obtained by 10-fold cross-validation

with D1.

As expected, in general the results are slightly worse in D2
and D3 when compared to D1. This is the effect of new data

that presents unmodeled patterns to the classifiers. As time

passes and as new accounts are added this effect should be

expected with increased impact.

Focusing on the results obtained in datasets D2 and D3,

in general the classifiers maintain very high TPR and TNR

except for the models specific to infrastructure part B, that

exhibit a significant drop in TPR. This might be explained

by the fact that part B has the smallest number of positive

training examples (see Table II), hence it is more sensitive to

the novelty of data in D2 and D3.

In most cases, the TNR is higher than the TPR, with ex-

ceptions for the models of infrastructure part A, where TPR is

higher than the TNR, and for the MLP model of the complete

infrastructure, where the results are comparable. In general a

higher TNR might be explained by the imbalance between

positively and negatively labeled data in the training data sets,

which favors the TNR. The exception for infrastructure part A
may be due to the simplicity of tweets collected for this part.

When comparing SVMs and MLP NNs, considering the

specific models for the infrastructure parts, the results are

comparable in terms of TNR, but show a consistent advantage

of SVM models regarding the TPR. As a consequence this

is also true for the SVM model ensemble, which is, for the

SVM approach, the best solution. Regarding the classification
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models trained for the complete IT infrastructure, the MLP

NN achieved the best results, showing also the best balance

between TPR and TNR.

Overall, the results of the SVM ensemble model standout,

achieving high TPR and TNR classification rates, the best

balance between these metrics, and little degradation from

training to validation results.

V. CONCLUSIONS

This paper presents the experimental work carried out to

select the classification approach used in a streaming Twitter-

based threat monitor developed for threat awareness in security

operation centres. The threat monitor, named SYNAPSE,

gathers tweets from a set of Twitter accounts, filters them

to target solely the monitored infrastructure, classifies re-

maining tweets as either relevant or not, aggregates tweets

related to same threat using a stream clustering approach,

and generates indicators of compromise suitable for threat

sharing platforms. The results obtained from the model design

experiments revealed that using a single classification model

for the complete monitored infrastructure is preferable to

using an ensemble of models for different infrastructure parts.

Furthermore, when compared to multi-layer perceptron neural

networks, support vector machines achieved the best balance

between true positive and true negative classification rates. For

the selected support vector machine model, these rates were

very close or above 90%, showing little degradation from the

training to the validation data sets.
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