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Fig. 1. Our interactive learning framework allows users to train text relevance classifiers in real-time to improve situational awareness.
In this example, a real-time tweet regarding a car accident is incorrectly classified as “Irrelevant”. Through the SMART 2.0 interface, the
user can view its label and correct it to “Relevant”, thereby retraining and improving the classifier for incoming streaming data.

Abstract—Various domain users are increasingly leveraging real-time social media data to gain rapid situational awareness. However,
due to the high noise in the deluge of data, effectively determining semantically relevant information can be difficult, further complicated
by the changing definition of relevancy by each end user for different events. The majority of existing methods for short text relevance
classification fail to incorporate users’ knowledge into the classification process. Existing methods that incorporate interactive user
feedback focus on historical datasets. Therefore, classifiers cannot be interactively retrained for specific events or user-dependent
needs in real-time. This limits real-time situational awareness, as streaming data that is incorrectly classified cannot be corrected
immediately, permitting the possibility for important incoming data to be incorrectly classified as well. We present a novel interactive
learning framework to improve the classification process in which the user iteratively corrects the relevancy of tweets in real-time to
train the classification model on-the-fly for immediate predictive improvements. We computationally evaluate our classification model
adapted to learn at interactive rates. Our results show that our approach outperforms state-of-the-art machine learning models. In
addition, we integrate our framework with the extended Social Media Analytics and Reporting Toolkit (SMART) 2.0 system, allowing the
use of our interactive learning framework within a visual analytics system tailored for real-time situational awareness. To demonstrate
our framework’s effectiveness, we provide domain expert feedback from first responders who used the extended SMART 2.0 system.

Index Terms—Interactive machine learning, human-computer interaction, social media analytics, emergency/disaster management,
situational awareness

1 INTRODUCTION

Social media data has been used extensively in a variety of applications
and research endeavors due to its ability to provide useful information
on the public’s opinions and behavior. Analysts in various domains
are increasingly using social media to gain rapid situational awareness.
For instance, first responders are leveraging Twitter data to obtain ac-
tionable information for crisis response and prevention (see [29] for an
extensive list of literature on this subject). However, the vast amounts
of unstructured text make the identification of relevant information
nontrivial, limiting situational awareness. This issue is further com-
pounded by changes in topics of interest (to end users) over time, since
the computational models built to determine relevant information for
one event or one user group may not apply to other events or other user
groups due to variations in diction, word structure, or user expectations.

Several classification approaches have been developed to identify
relevant and irrelevant social media information, such as clustering [5,
6], keyword matching [45], and term-vector similarity [12]. However,
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to the best of our knowledge, no existing work in this area includes
interactive learning with real-time data, focusing instead on improving
the machine learning algorithms themselves [5,16,23,31–33,38,45,46,
54] or interactively training on archived datasets [9, 18]. Continuing
on our example of first responders, a pre-trained classifier may not
fulfill first responders’ varying needs, since one first responder may
be interested in monitoring road closures, and another one might be
interested in identifying disinformation and misinformation on social
media in order to take counter-action. Ultimately, first responders’
definition of relevancy will depend on the situation at hand, which can
vary over time. Interactively training classifiers through iterative user
labeling can alleviate this problem.

In this paper, we present a novel interactive framework in which
the user iteratively (re)labels the relevancy of streaming social media
data to adaptively train the underlying model to match their needs for
improved situational awareness. We compare three different types of
neural networks in terms of classification performance and compu-
tational efficiency for real-time learning. Furthermore, we optimize
and computationally evaluate the selected models by simulating the
real-time user feedback on several crisis-related datasets. Our results
show that our interactive model outperforms state-of-the-art machine
learning-based classification models.

To incorporate our evaluated models into a working application,
we extend an existing visual analytics system tailored for situational
awareness called the Social Media Analytics and Reporting Toolkit
(SMART) [52, 53], which has been successfully used by many first
responder groups in the United States. SMART allows users to interac-
tively explore trending topics on social media through integrated topic
modeling and spatial, temporal, and textual visualizations. We call the



newly extended system SMART 2.0, which incorporates our interactive
learning framework to address the needs raised by the aforementioned
first responder users and reduce noise in the incoming stream of data.

Finally, we present domain-expert feedback on the usefulness of
our approach as experienced by multiple first responders who used
SMART 2.0 for crisis-related use cases. In addition, we include two
usage scenarios of the system to illustrate its application to real-life
situations. Overall, the major contributions of this paper are as follows:

1. We present a novel interactive learning framework for classifica-
tion of streaming text data.

2. We compare three different types of neural networks in terms
of performance and computational efficiency, and tune the mod-
els for learning at interactive rates. We further computationally
evaluate the selected model on several disaster-related datasets.

3. We integrate our models in SMART 2.0, a visual analytics ap-
plication for situational awareness, and present user feedback
obtained from domain experts using the system for crisis events.

In the remainder of the paper, we discuss related work in section
2, the design of the framework and model in section 3, SMART 2.0
in section 4, evaluation of our framework in section 5, discussion and
future work in section 6, and concluding remarks in section 7.

2 RELATED WORK

2.1 Short Text Classification
Researchers have presented many techniques to classify text documents
into categories such as sentiment or topics [17, 35, 37, 49]. However,
classifying short text, e.g. social media posts, is more challenging due
to the lack of contextual information and loose adherence to standard
grammar. To tackle the brevity of short text, auxiliary resources such
as external corpora [10] or knowledge bases [20], or methods such as
term frequency-inverse document frequency (TF-IDF) [16], have been
proposed for improving classification.

Representing words as n-dimensional vectors (i.e. word embedding)
has become increasingly prevalent, since vectors can be used as inputs
to machine learning models for finding semantic similarities [47,50].
In particular, Google’s Word2Vec [30] has been employed extensively
in classification tasks [4, 26, 27, 32, 33] due to its impressive ability in
capturing linguistic regularities and semantics. For instance, words
frequently used together are likely to be closer in the Word2vec vector
space than words that are not, and vector operations reveal meaningful
semantics (e.g., the vector “King” − “Man” + “Woman” is close to the
vector “Queen” [30]). Since pre-trained Word2vec models encode em-
beddings learned from larger web corpora, they have been increasingly
used in short text classification tasks [4, 32, 33, 44].

Neural networks have generated state-of-the-art results in recent
years for text classification problems [30,32,33,43] and have also been
used with Word2Vec [32, 33, 44]. Neural networks are well-suited for
online learning processes in which training data is supplied iteratively
since they can learn adaptively from new data [32, 33]. Nguyen et
al. [33] presented a convolutional neural network with Word2Vec that
outperformed non-neural classifiers, and Nguyen et al. [32] proposed
a new online learning classification algorithm for deep neural net-
works utilizing the log-loss and gradient of sequential training batches.
Their methods were evaluated with disaster-related datasets. However,
these methods were not adapted to user-guided learning in which time
constraints are essential and the provided batches may be small. In
particular, the online learning method designed by Nguyen et al. [32]
was evaluated with batch sizes of 200. In our work, we assume the user
needs to train with flexibly interactive amounts of data (10-20 samples)
to view immediate predictive improvements for situational awareness.

Classification for situational awareness. Utilizing real-time social
media data for situational awareness (and crisis prevention in particular)
is a heavily researched topic [16, 23, 31–33, 38, 45, 54]. However,
identifying situationally-relevant information is nontrivial due to the
high noise-to-signal ratio. Karimi et al. [23] found that classification
methods, such as Support Vector Machine and multinomial Naı̈ve

Bayes, can identify disaster-related tweets, although generic features
such as hashtag count and tweet length are preferable so that the model
does not learn relevancy only for a specific disaster. Researchers have
used clustering [5, 6, 46] or enhanced keyword matching [45] to detect
relevant crisis and event information, and provided human-annotated
Twitter corpora that can be used to train word embedding models [21].

Nazer et al. [31] developed a system to detect requests for help by uti-
lizing both tweet context (e.g., geotag) and content (e.g., URLs). Rudra
et al. [38] designed a novel classification-summarization framework
to classify disaster-related tweets, and then summarize the tweets by
exploiting linguistic properties typical of disaster tweets (e.g., combina-
tions of situational and non-situational information). Zoppi et al. [54]
provided a relevance labeling strategy for crisis management that com-
puted data relevance as a function of the data’s integrity (e.g., are the
geo-coordinates incorrect?), statistical properties (e.g., can we select a
subset of the data that are geographically close?), and clustering (e.g.,
what groups are present in the data?). Toriumi et al. [46] clustered
tweets based on their retweet count in real-time to extract important
topics and classify tweets accordingly.

The methods discussed so far, however, lack user interactivity. In
particular, these classification methods are inflexible to user-dependent
needs that change over time as new situations and events occur. As
such, their practical use for real-time situational awareness is limited.

2.2 Visual Analytics and Interactive Learning for
Situational Awareness

Researchers have presented a number of visual analytics (VA) solutions
for situational awareness. Diakopoulos et al. [12] developed Vox Civi-
tas, a VA application for journalistic analysis and user-guided filtering
using social media content. Vox Civitas filters out unrelated data by
automatically computing time-dependent term-vector similarities. Twit-
Info [28] aggregates streamed Twitter data and automatically discovers
events from activity peaks in real-time. The authors assign relevance to
a tweet by counting its number of event-related keywords. Pezanowski
et al. [36] designed the geovisual analytics system SensePlace3 to
provide situational awareness by leveraging geographical information
and place-time-theme indexing with string-based queries for exploring
datasets. SensePlace3 primarily relies on TF-IDF for tweet retrieval in
response to user queries. However, these tools do not employ machine
learning for relevance classification and do not integrate user feedback
to improve their underlying models or algorithms.

Visual analytics has also been increasingly used to improve various
machine learning processes, such as feature selection [13], attribute
weighting [48], and labeling [8, 9, 18], and even understanding the
models themselves [22, 39, 42]. Sacha et al. [40] proposed a framework
to discuss the various forms of human interaction with machine learning
models in visual analytics systems and theorized that VA tools could
increase knowledge and usability of machine learning components.
Endert et al. [15] designed a system that classifies archived documents
through user-guided semantic interactions (e.g., moving a document
to another group) that improve the underlying model. Our work is
based on the same idea in that we intend to improve model performance
through user feedback, but with real-time social media data.

Heimerl et al. [18] analyzed three separate methods for user-guided
classification of a set of archived text documents: the basic method,
which does not employ sophisticated visuals; the visual method, which
visually represents the labeled and unlabeled documents for user explo-
ration; and the user-driven method, which provides the user with full
control over the labeling process. The first two methods employ active
learning, in which the model selects a data sample to be labeled by the
user that most effectively helps it distinguish relevant from irrelevant
data. This contrasts with the user deciding which instances they wish to
label. The authors did not find any statistically significant differences
in terms of F1 score between the methods in their user study. Bosch et
al. [9] developed ScatterBlogs2, a VA application that provides user-
guided learning of filter classifiers on historical social media messages
to support situational awareness. These two works are perhaps the
most similar to ours, yet differ in two fundamental ways. First, they do
not provide interactive learning in real-time, which strains the user, as



they are required to visit historical data for additional training. Second,
they do not employ neural networks, which are better suited for online
learning environments, such as social media streaming, in which train-
ing data is supplied sequentially over time [32, 33]. It is important to
note that Bosch et al. [9] allow the user to adjust a filter’s focus (i.e.,
how precise the classification is) in real-time if it misses relevant data
or does not sufficiently filter out irrelevant data. However, this could
indicate that the model has not properly learned the distinction between
relevant and irrelevant data. Since training can only be completed with
historical posts, the user is unable to update the model immediately
with the streamed data, limiting situational awareness. Our approach
not only solves this issue by allowing the user to immediately train the
model for improvement, but also provides the user with the ability to
create classifiers on-the-fly to accommodate their real-time needs.

3 INTERACTIVE LEARNING FRAMEWORK

Our framework for interactively learning relevant social media posts in
real-time consists of two primary components. The first is a formalized
set of design goals necessary to effectively facilitate situational aware-
ness in real-time through user interactivity. The second is a detailed
underlying model that is adapted to user-guided training with real-time
streaming data. In section 4, we discuss our implementation of the
framework that realizes the design goals.

3.1 Design Goals
The framework’s design goals were iteratively defined through discus-
sions with domain experts such as first responders who frequently use
visual analytic social media applications for real-time situational aware-
ness. In general, these experts found it necessary for the interactive
framework to incorporate user feedback in a timely manner, as well
as account for time and situation-dependent user needs. With their
feedback, the following specific design goals were established:

DG1 Filter and view relevant data: Filtering data by relevancy re-
moves noisy data, allowing the user to more quickly find data that
may require immediate attention or contain important information.
The ability to view the relevant data itself is equally important for
determining the urgency and content of relevant data.

DG2 Correct incorrect classifications: Since classifiers may provide
incorrect results, especially during the early stages of training,
it is necessary for the user to be able to correct the label in real-
time. This both improves the model’s performance and lowers
the likelihood that incoming streamed data will be incorrectly
classified and missed.

DG3 Create new classifiers in real-time: The needs of the user can
change dramatically over time and vary across users themselves.
As an example, one user may wish to train a classifier to find data
related to a specific hurricane event to expedite identification of
people in desperate need of assistance. However, another user
may wish to find data related to safety in general, not just a
hurricane. As such, they should each be able to create and train
their own classifiers in real-time specific to their needs at the time.

DG4 Minimize model training time: Although it is important to de-
sign a high-performing model, time constraints are equally im-
portant. Specifically, when the model is trained by user feedback,
the user should not have to wait for several minutes for the model
to be retrained and relabel data. Previously streamed data labels
may update with retraining, allowing the user to potentially find
important information that they had not seen before. As such, it is
necessary to provide these updated results as quickly as possible
for real-time situational awareness.

3.2 Workflow
Fig. 2 shows the three primary components of our framework’s work-
flow applied to streaming tweets (however, the framework can be gener-
alized to other kinds of text). First, as tweets are streamed in real-time,

Fig. 2. High-level workflow of our framework with three main components:
tweet vectorization, tweet classification, and user feedback.

they are vectorized using a word embedding model. Second, the vec-
torized tweets are provided as inputs to the neural network classifier
(discussed in next section), which outputs a set of probabilities from
the activation function of the tweet’s predicted relevancy and assigns
an unverified relevance label. Third, the labeled tweet is relayed to
the user through the user interface. If the user identifies tweets with
incorrect labels, they can correct the label for the system to retrain and
improve the model for relevance predictions.

3.3 Interactive Model Details

In the following subsections, we elaborate on the underlying repre-
sentations and models used to support our interactive learning frame-
work. We design, optimize, and evaluate our approach with the key
assumption that classifiers are trained (from scratch) in real-time using
user-provided labels for streaming text. We simulate this process by
adding training examples in small batches of 10 and evaluating against
testing data, as explained below. All simulations were completed on
a server with 128 GB RAM, 32 TB of disk storage, and 2 Intel(R)
Xeon(R) E5-2640 v4 CPUs at 2.40GHz.

3.3.1 Model Candidates

Selecting the underlying model for our framework was a key task, as
it must be efficiently trainable with a continual stream of user-labeled
data (DG4). As discussed in Section 2, neural networks are a natural
choice for online learning scenarios in which training data is supplied
sequentially over time [32, 33]. In addition, neural networks have gen-
erated impressive results with Word2Vec [30] embeddings [32, 33, 44].
Therefore, we employ a neural network as our classifier to determine
text relevance based on real-time training examples provided by the
user. To convert the text into vector inputs (of our neural network),
we use word embeddings generated by Google’s Word2Vec skip-gram
model [3, 30], which contains 3 million 300-dimensional word vectors
pre-trained (and therefore, capturing word embeddings) on a subset of
the Google News dataset with approximately 1 billion words.

In selecting the specific neural network model type, we experimented
with the well-known Convolutional Neural Network (CNN) [25], Long-
Short Term Memory (LSTM) Neural Network [19], and Recurrent
Neural Network (RNN) [14] since they have performed well in various
text classification tasks [51]. Hybrid architectures, such as recurrent
convolutional neural networks [24], have also been proposed in recent
years, but have not been made available in well-supported libraries.
Therefore, we did not consider them in this paper, since our goal was
to also support a well-tested SMART 2.0 system for end users.

Our CNN model contains the traditional convolutional and max-
pooling layers before activation [51]. Specifically, we apply a 1-
dimensional convolutional layer, 1-dimensional max-pooling layer,
flatten the output, and then activate it with softmax and a dense layer.
The filter and kernel sizes of the convolutional layer are optimized
during the hyperparameter stage (explained in Section 3.3.4). We use
Hochreiter’s LSTM [19] and the traditional RNN [14] architectures as
provided by Keras [2]. The LSTM and RNN hidden layer each contain
300 hidden neurons and use softmax activation.



3.3.2 Design
As mentioned before, to enable the use of neural networks for classify-
ing text, we convert the unstructured text (of the tweets) into vectors
ready for consumption by the neural network. When using Word2Vec
vectors as features for classification, a common approach is to con-
vert each word in the sentence to its vector, average the word vectors
in the sentence, and then use the resulting feature vector for model
training [4, 43]. However, averaging the vectors results in the loss of
syntactic information, which can negatively impact classification re-
sults [27]. As an example, the two sentences “Only Mary will attend the
ceremony.” and “Mary will only attend the ceremony.” would generate
identical averaged sentence vectors since they contain the same set of
words, but they differ in meaning. Therefore, to capture both semantic
and syntactic information, we represent a sentence as a matrix where
each row i is a 300-dimensional Word2Vec vector corresponding to
word i in the original sentence.

The input to the neural network consists of the matrix represent-
ing the sentence (as described above) and the output consists of the
classification labels for the input sentence (Fig. 2). Specifically, we
allow a tweet to be (1) Relevant, (2) Not Relevant, or (3) Can’t De-
cide. The label with the highest probability from the activation function
corresponds to the final label given to it. The “Can’t Decide” label
indicates that the tweet may or may not be relevant depending on the
context. This is useful if the user finds a social media post such as
“Remembering when Hurricane Irma destroyed my home...” that may
not directly relate to the current event, but may be semantically relevant,
and the user does not want to mark such cases as “Not Relevant”. This
gives the user more flexibility to accommodate their needs since the
definition of relevancy will depend on both the user and the situation.

3.3.3 Corpus for Model Selection and Optimization
To experiment with different neural network model types and optimize
the selected model, we used a disaster-related corpus annotated on
the crowd-sourcing platform, Figure Eight [1]. The dataset contains
10,876 tweets related to different types of disaster events, such as
hurricanes and automobile accidents. The data was collected using
keywords such as “ablaze” or “quarantine”, and therefore, covers a
wide variety of disaster-related topics. Our main motivation for using
this open dataset is its size (as well as topical relevance), enabling the
optimization of hyperparameters and comparison of various models. In
the corpus, each tweet is manually labeled by Figure Eight’s workers as
“Relevant”, “Not Relevant”, or “Can’t Decide”, and the distribution of
labels is unbalanced. Specifically, there are 4,673 “Relevant” instances,
6,187 “Not Relevant” instances, and 16 “Can’t Decide” instances. This
dataset has been used in other tweet classification research projects
[45]. However, the researchers of that study remove the tweets with the
“Can’t Decide” label to improve training data quality. As explained in
the previous section, we find the “Can’t Decide” option useful for users
to apply to cases with insufficient context for relevance determination.
We randomly shuffle the data and divide the dataset into 80% training,
10% validation, and 10% testing sets.

It is important to note that we only use the Figure Eight dataset to
optimize the hyperparameters and provide an initial evaluation of the
model by simulating the provision of labels in real-time by the user.
Since each tweet in the dataset contains true labels that were manually
assigned by humans, it allows us to evaluate the model performance by
comparing the model’s predictions to the true labels after each training
iteration. Our proposed approach as well as its integration within the
SMART 2.0 system, however, allows for the creation of the models
from scratch (with no prior training) (DG3), leveraging real-time labels
provided by users on streaming data for training.

3.3.4 Optimization
In order to experiment with the different neural network model types,
we ran several training simulations with random combinations of hy-
perparameters (i.e., random grid search) to see which model converged
to the best F1 score. The F1 score is a metric widely used to evaluate
the quality and performance of machine learning models and neural
networks [41]. It is computed as the harmonic mean of precision

(the proportion of true positive predictions compared to the total num-
ber of positive predictions) and recall (the proportion of true positive
predictions compared to the overall number of positive instances) :
F1 = 2×precision×recall

precision+recall . The F1 score provides a balanced measure,
combining these two performance aspects. It is therefore more infor-
mative compared to other metrics such as accuracy, especially when
the training and testing sets are imbalanced [11], as in our case.

A central part of our approach to the training, validation, and verifica-
tion of learning models is simulating the interactivity of visual analytics
for real-time data, i.e. for use cases in which training data does not
exist prior to user interaction. We assume the user (re)labels the in-
coming stream of data and therefore iteratively trains a model, which
consequently meets their real-time needs. To replicate this process, we
computationally evaluate the model’s performance (as if it is succes-
sively trained by user-labeled data) by iteratively training the model
with 10 new samples from the training dataset. We average the F1 score
obtained from each of these iterations and use the resulting number
to measure the model’s performance. In addition, we introduce a new
variable, window size, for our training iterations. Specifically, due to
the considerably small amount of training data provided by the user, we
found that an appropriately small number of epochs (one forward and
one backward pass over the training data in the model) was necessary
to reduce performance degradation from initial overfitting. However,
we also found that increasing the number of epochs could lead to higher
F1 scores as more data was provided. Thus, we use a sliding window
of 110 samples that includes the (successively provided) new training
data (10 samples) as well as the most recently used training data (100
samples) to both account for small amounts of training samples and
increase the number of total training epochs for a given sample.

We use the validation data to optimize the hyperparameters for each
of the CNN, LSTM, and RNN models. Specifically, after each training
iteration with 10 new samples, we evaluate the neural network’s F1
score on the validation set to view its simulated performance as if it
was trained by gradual user labeling. After identifying the optimal
hyperparameters for each of the CNN, LSTM, and RNN models, we
evaluate their performance on the testing set.

Table 1 demonstrates the results from our validation stage. Specifi-
cally, it lists the average F1 score obtained during each training simula-
tion along with the total CPU time required to complete the simulation
(accumulated with each training and evaluation iteration). Although
in many applications, F1 score alone is sufficient to evaluate machine
learning models, it is not for ours. To see why, note that the LSTM
model yields an F1 score of 0.75, the highest of any hyperparameter
combination. However, the LSTM model (with the highest F1 score)
takes approximately 4,242 seconds to complete training, whereas the
CNN model (with the highest F1 score) only takes 504 seconds. Thus,
the LSTM model takes roughly eight times longer to simulate than the
CNN model, but does not improve its F1 score by a significant amount
(LSTM: 0.75 vs. CNN: 0.74). In the context of interactive learning, we
wish to balance the training/CPU time and performance such that the
model both performs well and retrains in a short amount of time for
rapid improvement (DG4). Therefore, it is necessary to consider both
the CPU time and average F1 score. With these optimization standards
in mind, we chose the hyperparameters that yielded the highest F1
scores for each model since the other hyperparameter combinations
generated lower F1 scores and higher or comparable CPU times. The
selected combinations correspond to rows 1, 4, and 7 in Table 1 with
the average F1 scores in bold.

The testing process is identical to the validation process: after the
model is trained with 10 new samples, its performance is measured by
computing the average F1 score on the testing set (using the optimized
hyperparameters from the validation stage). Our results are summarized
in Table 2. We found that the LSTM model yielded the highest F1 score
of 0.75. The CNN and RNN models achieved a 0.73 and 0.70 F1
score, respectively. Based on these results and the previously discussed
optimization standards, we selected the optimized CNN model for
our classifier. In particular, the CNN simulation not only yielded a
competitive average F1 score of 0.73, but also achieved this score 6
to 8 times more quickly than the LSTM or RNN (Fig. 3), which is



Table 1. Average precision, recall, F1 score, and CPU time for the top three performing hyperparameter combinations on each of the CNN, LSTM,
and RNN models. Bold numbers correspond to the highest F1 scores and lowest CPU times for each of the three model types. We report the recall,
precision, and F1 score to four decimal places (when necessary) to distinguish the average F1 scores.

Model Learning Batch Epochs Dropout Recurrent Filter Kernel Optimizer Average Average Average CPU
Rate Size Dropout Size Size Precision Recall F1 score Time (sec)

CNN 0.0079 10 1 – – 16 2 Adam 0.75 0.73 0.74 503.82
CNN 0.01 50 2 – – 16 2 Adagrad 0.73 0.71 0.72 522.47
CNN 0.0063 10 3 – – 16 2 Adam 0.73 0.71 0.72 553.43

LSTM 0.0002 10 10 0.4 0.2 – – Adam 0.7597 0.7475 0.7534 4241.97
LSTM 0.0002 20 8 0.2 0.6 – – Adam 0.7597 0.7468 0.7530 4100.37
LSTM 0.0006 100 12 0.6 0.6 – – Adam 0.7559 0.7431 0.7493 4209.37

RNN 0.0001 10 7 0.0 0.2 – – Adam 0.7037 0.6957 0.6996 3069.81
RNN 0.0001 20 5 0.0 0.0 – – Adam 0.7028 0.6921 0.6973 2805.52
RNN 0.0001 100 12 0.0 0.2 – – Adam 0.70 0.69 0.69 3160.35

Table 2. Testing results with the optimal hyperparameter combinations
for the CNN, LSTM, and RNN models. The bold numbers correspond to
the highest F1 score and lowest CPU time among the three models.

Model Average Average Average CPU
Precision Recall F1 score Time (sec)

CNN 0.74 0.73 0.73 501.10
LSTM 0.76 0.74 0.75 4211.01
RNN 0.70 0.69 0.70 3085.59

significant in terms of responding to user feedback in a timely manner.
The optimized CNN model yielded 0.74 and 0.73 average precision

and recall scores respectively (Table 2, row 1). This model performance
may be due to the initial lack of sufficient training data and difficulty
in classifying certain tweets. For instance, after examining the testing
dataset, we found that many misclassified tweets were extremely short
(e.g., the tweet “screams internally” was misclassified as “Relevant”)
or contained complex disaster-related diction (e.g., the tweet “emer-
gency dispatchers in boone county in the hot seat” was misclassified as
“Relevant”). However, as we demonstrate in the next section, our model
still outperforms state-of-the-art learning models on tweet datasets.

It is worth noting that we do not save the trained model from the
validation or testing stages for evaluation in the next stage (or for use
with SMART 2.0). We only save the optimized hyperparameters. This
is because we assume that users start training a new model (for any
event or topic they choose) by labeling the incoming stream of tweets.

In this section, we optimized the model on a sufficiently large dataset
that contained tweets related to several kinds of disasters. In the next
section, we evaluate the model on datasets containing tweets on specific
events, which is representative of cases for situational awareness.

3.3.5 Evaluation

To further demonstrate the optimized CNN model’s performance, we
computationally evaluated it on wildfire, bombing, and train crash
datasets from CrisisLexT26 [34], each of which contain approximately
1,000 tweets collected during 2012 and 2013 from 26 major crisis
situations labeled by relevance. We apply a similar process to evaluate
our optimized CNN model on these datasets as we did with the Figure
Eight [1] dataset. Specifically, we split the data into 50% training
and 50% testing sets (to replicate the experimental setting of To et
al. [45], against which we will compare our results), train the model
by supplying 10 tweets from the training set at a time (to simulate user
labeling of streaming data), evaluate the resulting model on the entire
testing set, and then average the F1 scores for each evaluation.

We summarize our results in Table 3 and graph the model’s perfor-
mance for retraining with 10 new incoming tweets in Fig. 4, 5, and 6.

Fig. 3. The total CPU time required for each model to complete the
testing simulation. The CNN model is noticeably faster than both the
LSTM and RNN models.

In addition, we report the average CPU times to train the model during
a single iteration (10 tweets) with each dataset in Table 3. Since the
datasets vary slightly in size, we only compute the averages from the
first 45 iterations since the smallest dataset (Boston Bombings) required
45 iterations to complete the simulation. We found that per-iteration
training was fast and approximately 0.5 seconds with each dataset,
which meets our timing demands (DG4).

We obtained 0.71, 0.64, and 0.88 F1 scores for the Colorado wildfires,
Boston bombings, and NY train crash datasets, respectively. Interest-
ingly, the variance of the F1 scores over the datasets is significant. The
textual data in the Boston bombings dataset, which yielded the lowest
average F1 score, was not as easy to separate into the different rele-
vance categories by the model compared with the other two datasets.
However, the F1 score does eventually converge towards a higher value
similar to the other datasets, indicating the potential presence of out-
liers during the first few training iterations. In addition, we found that
the simulations converged to the average F1 scores after training with
approximately 190–230 tweets, depending on the dataset, meaning
that users need to label 190–230 tweets to achieve the reported F1
scores. However, the CrisisLexT26 datasets also correspond to specific
events, such as wildfires. As such, we surmise that interactively training
the model on specific, well-defined events will reduce the amount of
training data needed to achieve satisfactory results than with generic
constraints on relevance (e.g., a classifier about safety in general).

Finally, we compare our results with the learning-based algorithm
employed by To et al. [45], who also evaluated their model’s perfor-
mance with CrisisLexT26 datasets. In particular, their learning-based
approach used Word2Vec, TF-IDF, latent semantic indexing, and logis-



Table 3. Average precision, recall, and F1 score for three Cri-
sisLexT26 [34] datasets.

Category Average Average Average Average CPU
Precision Recall F1 score Time (sec)

Colorado wildfires 0.72 0.71 0.71 0.49
Boston bombings 0.64 0.65 0.64 0.50

NY train crash 0.86 0.90 0.88 0.49

Fig. 4. Optimized CNN F1 score per training iteration of 10 tweets with the
Colorado wildfires dataset (Table 3). The F1 scores are logarithmically
fitted and intersect with the average F1 score (0.7134) at 228 tweets.

Fig. 5. Optimized CNN F1 score per training iteration of 10 tweets with
the Boston bombings dataset (Table 3). The F1 scores are logarithmically
fitted and intersect with the average F1 score (0.6410) at 184 tweets.

Fig. 6. Optimized CNN F1 score per training iteration of 10 tweets with
the NY train crash dataset (Table 3). The F1 scores are logarithmically
fitted and intersect with the average F1 score (0.8792) at 191 tweets.

tic regression for classifying data as relevant or irrelevant. The authors
of that study split the dataset into two equal parts: one for training and
one for testing. They trained the model once (as opposed to our iterative
approach) and evaluated on the testing set. Their algorithm was able to
yield high precision scores between 0.85–0.95, compared to our scores
of 0.64–0.86. However, their recall scores were approximately 0.22–
0.45, considerably lower than our recall scores of 0.65–0.90. Therefore,
our approach outperforms the learning-based model presented by [45],
in terms of the overall F1 score: our interactive approach achieves F1
scores of 0.64–0.88 (depending on the dataset) compared to 0.45–0.64
by [45]. The authors also presented a matching-based approach that
achieved a much higher F1 score of 0.54–0.92, which is comparable
to ours. However, they generate the set of hashtags to be used for
matching by scanning all of the tweets in the dataset. Since we assume
the data is streamed in real-time, and therefore, not available altogether,
we use an iterative learning approach.

4 SMART 2.0
4.1 SMART
The Social Media Analytics and Reporting Toolkit (SMART) [52,53] is
a visual analytics application designed to support real-time situational

awareness for first responders, journalists, government officials, and
special interest groups. SMART obtains real-time publicly available
geo-tagged data from the Twitter streaming API. The user is able to
explore the trending and abnormal topics on various integrated visu-
alizations, including spatial topic model visualization and temporal
views. The tweet time chart and theme river visuals convey the tem-
poral distributions of topics if the user wishes to determine how the
content of streamed social data has changed over time.

SMART uses string matching-based classifiers to visualize relevant
data. Specifically, the user can either (a) select pre-defined filters,
such as Safety or Weather (Fig. 7(c)), each using a series of related
keywords for inclusion and exclusion of tweets in the subsequent topic-
modeling (Fig. 7(f)) and (geo)visualizations (Fig. 7(b)), or (b) create
their own filters by supplying keywords, and intersect or union multiple
filters according to their needs. However, keyword-based matching
is insufficient for finding relevant information as it fails to accurately
capture semantic relevance and therefore effectively filter out noisy
data. As an example, if the user were to apply the Safety classifier, it
would be possible for the tweets “My house is on fire!” and “I was just
fired from my job.” to pass through the filter since they both include the
keyword fire. However, the latter is unrelated to the intended semantic
context of Safety and thus dilutes the filter’s quality.

To address this problem, we integrate our interactive learning
framework (the focus of this paper) in the existing SMART applica-
tion [52, 53] and seek domain expert feedback on the use of these mod-
els. We call the resulting extended application SMART 2.0. SMART
2.0 allows users to define string matching-based keyword filters (simi-
lar to SMART), but adds the ability for users to then iteratively refine
and train the newly integrated models by labeling the filtered data as
semantically relevant or not. In addition, the SMART 2.0 interface
includes interactive visuals to facilitate user exploration, filtering, and
refinement of relevant data (Fig. 7).

As with the model simulations in Section 3.3, SMART 2.0’s under-
lying models are trained with successive batches of 10 user-labeled
tweets. In cases where model predictions conflict with user labels,
user labels override the model’s since they represent the ground truth.
In addition, users should not need to manually relabel the same data
multiple times. Although conflicts might indicate that the model is not
sufficiently trained, the model trains with the same data during several
successive iterations (as discussed in Section 3.3.4), so conflicts might
be resolved after future iterations.

4.2 SMART 2.0 Interface
The extensions to SMART 2.0’s user interface, compared with SMART,
concern the new interactive visuals that allow users to iteratively train
machine learning models, utilize model predictions for rapid relevancy
identification, and understand a model’s reliability. The SMART 2.0 in-
terface (Fig. 7) extends the interactive features of SMART for relevance
identification in three primary ways:

1. Extending the tweet table (containing a tweet’s creation date and
text) by including the predicted relevance label, relevance label
probabilities, label modification, model training performance, and
relevance filtering.

2. Extending the interactive map containing the geo-tagged tweets
whose relevancy can be individually inspected or modified.

3. Altering the content of existing SMART views (e.g., topic models
and spatial topic lenses) using either all data or only relevant data
(as identified by the model and corrected by the user).

4.2.1 Table
The SMART 2.0 table (Fig. 7(g)–(j)) is extended from SMART in that
it not only provides a tweet’s creation date and text, but also provides
the predicted relevance label (Fig. 7(i)) and the probabilities of a tweet
belonging to any of the relevance classes (Fig. 7(j)) (DG1).

In particular, the relevance of a tweet can be “Relevant”, “Not Rel-
evant”, or “Can’t Decide”. The “Relevant” label is colored blue, the
“Not Relevant” label red, and the “Can’t Decide” label gray to visually
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Fig. 7. SMART 2.0 overview: (a) The control panel provides several filters, visualizations, and views. (b) The content lens visualization provides the
most frequently used words within a selected area. (c) The tweet classifier visualization provides keyword-based filters to help reduce noisy data.
(d)(e) Clicking a tweet on the map with the tweet tooltip visualization displays the tweet’s time, message, and relevance label. (f) The topic-modeling
view, based on Latent Dirichlet Allocation, extracts trending topics and the most frequently used words associated with each topic among tweets
with specified relevancy. (g)–(j) The message table aggregates the tweets for efficient exploration with (g) the model’s estimated classification
performance (F1 score), (h) a drop down box to filter data by their relevance labels, (i) color-coded relevance labels that can be changed by clicking
on the label itself, and (j) associated relevance probabilities. Tweet map symbols are colored orange and purple to distinguish Twitter data from
Instagram-linked tweets, respectively, since the latter contains potentially useful images for situational awareness.

separate tweets with different relevance. SMART’s preexisting blue
color scheme motivated us to use the blue, red, and gray diverging
coloring for relevancy in order to maintain visual appeal and harmony.

Users can directly click on relevance labels to correct the classifier’s
prediction (DG2). For instance, if a tweet is incorrectly marked “Rel-
evant”, clicking the label will change it to “Not Relevant” or “Can’t
Decide”, depending on the label the user wishes to assign. Further, a
drop down box is included at the top of the relevance label column
(Fig. 7(h)), which provides the option to filter out data that does not
have a specified relevancy (DG1). For example, by selecting “Relevant”
from the drop down box, the table will remove tweets with labels “Not
Relevant” and “Can’t Decide” from all views and visualizations in
SMART, including geovisualizations and temporal views.

The table also displays the degree (or confidence) of a tweet’s rel-
evancy. In specific, the probabilities of a tweet being “Relevant”,
“Not Relevant”, or “Can’t Decide” are represented as a horizontal seg-
mented bar graph and sized proportional to their respective percentages
(Fig. 7(j)). In addition, the user can sort tweets based on relevancy
probability in ascending or descending order.

We provide the relevance probabilities and associated sorting actions
as a supplementary relevance filtering mechanism (DG1). In particular,
it is possible for tweets to be classified as “Relevant” by the model, for
example, but with low confidence. The probability filtering allows the
user to specifically view high-confidence relevant data and therefore
further reduce potentially noisy data.

The table provides a performance bar that encodes the estimated
performance (F1 score) of the underlying learning model (Fig. 7(g)),
as well as the number of user-labeled tweets, to inform the user of
the model reliability. Since labeled testing data is not available to
evaluate the model for real-time training (because we assume the user
may train on any type of event data and has their own specifications

for relevancy), the model’s performance can only be estimated. Based
on our evaluations in Section 3.3.5 with datasets typical of situational
awareness scenarios (Table 3), the Colorado wildfires dataset generated
the F1 score (0.71) closest to the average of the three datasets (0.74).
Therefore, we use the Colorado wildfires dataset’s logarithmic trendline
y = 0.09loge(x)+0.22 (Fig. 4) to approximate the model’s F1 score as
a function of the number of user-labeled tweets.

4.2.2 Map
The SMART 2.0 map is extended from SMART in that it includes a
tweet’s relevance label (which can be modified) in addition to its text
and creation date (Fig. 7(d)(e)). Through the Tweet Tooltip, the user can
directly click on tweet symbols on the map to view their text and asso-
ciated relevancy (DG1). In addition, the user can correct the classified
relevance label (DG2) by clicking on the label itself. Map inspection
can allow the user to view and investigate potential geographical rele-
vancy trends. For example, during crisis events, relevant tweets might
be closely grouped on the map, so it may be more beneficial for the
user to view predicted relevance from the map itself.

The interactions between the table and map are synchronized. If
the user relabels data on the map, the associated new label will also be
updated in the table, and vice versa. In addition, selecting a relevancy
filter from the drop down box in the table filters the tweets on the map.

4.2.3 Integration with Existing Visualizations
Many of SMART’s original visualizations, such as the topic-model
views, spatial topic lenses, and temporal views help users make sense
of spatiotemporal text data. Therefore, we integrated all of these views
in SMART 2.0 with the relevance extensions.

Users have the option to view only relevant or all the data (includ-
ing irrelevant tweets) in various visualizations in case the interactive



classifiers are not yet trained to desirable accuracies since, as we show
in Section 3.3.5, classifiers typically require around 200 user-labeled
tweets to achieve F1 scores of 0.70–0.80. If they choose to view only
relevant tweets, any relevance filtering action also updates the data used
by other visuals. For example, the topic-modeling view (Fig. 7(f)) ex-
tracts the top 10 topics from the tweets and displays the most frequently
used words for each topic. If the user filters out irrelevant tweets, the
topic-modeling view will only be applied to the remaining relevant
tweets. It is important to note that the majority of visualizations in
SMART 2.0 require a minimum number of tweets in order to render.
When filtered relevant data is scarce, visualizations do not populate,
in which case users can individually inspect tweets. For instance, the
topic-modeling view requires at least 10 tweets to extract topics.

Overall, SMART 2.0’s suite of visualization tools can be used in
combination with relevance interactions to further understand trends
and important spatiotemporal characteristics of relevant data.

5 USER EXPERIENCE

In this section, we provide usage scenarios and feedback from domain
experts that demonstrate our framework’s effectiveness and usability.

5.1 Usage Scenario 1
Alice is an emergency dispatcher interested in identifying people in
need for help or hazardous locations during a hurricane. She uses
SMART 2.0 to find any related social media posts near the affected
area. She adds a new filter Hurricane and provides an appropriate set of
filter keywords such as “hurricane”, “help”, ”blocked”, and “trapped”.

After applying the Hurricane filter, she explores the filtered tweets
in the table and finds a tweet labeled “Relevant” that says “Does anyone
know how to get help setting up my TV?”. Since the tweet is unrelated
to a hurricane, she relabels it as “Not Relevant”. After further browsing
the table, she finds a tweet that says “The road near Taylor Loop is
blocked from a broken tree.”, but it is labeled as “Not Relevant”. Since
the tweet contains actionable information, she relabels it as “Relevant”.
After labeling several more tweets for model training and noticing that
the model predicts correctly, she decides to only view “Relevant” tweets
and sort them by most relevant. She promptly identifies a tweet posted
only a few minutes ago marked as highly relevant. It reads “Car just
crashed into tree blocking road near Taylor Loop!”. Alice immediately
notifies first responders of the location to provide assistance.

By using SMART 2.0, Alice is able to identify important, relevant
data more quickly through interactively training the model to remove
noise and then filtering by relevance.

5.2 Usage Scenario 2
To demonstrate the generalizability of our framework to other domains,
we applied our interactive framework in real-time during the Purdue
vs. Virginia 2019 March Madness game in the Kentucky area. We
assumed the role of a journalist who wanted to follow public discourse
on the game by identifying the relevant tweets. We first constructed
a Sports filter, which included keywords such as “Purdue”, “game”,
“score”, and “#MarchMadness”. We then interacted with the streaming
data by iteratively labeling the relevancy of tweets (from scratch) and
found that the system correctly classified incoming data after roughly
80 training samples (Fig. 8). We noticed that the time intervals between
successive trainings increased, indicating that it was more difficult to
find incorrectly labeled data towards the end and that the model gradu-
ally learned from user feedback. In particular, the interval between the
first and second training iterations was 2 minutes, whereas the interval
between the final two was 4 minutes.

5.3 Domain Expert Feedback
We piloted SMART 2.0 with two groups of first responders, each con-
taining two individuals, who frequently use SMART during events for
situational awareness in their operations. Both groups participated in
separate 1-hour long sessions via conference call in which they itera-
tively trained a classifier from scratch and applied relevance filtering
and visualizations to assess the implemented framework. They received
a tutorial of SMART 2.0 30 minutes beforehand and were provided

with web access to the system to complete the session. For both groups,
we simulated the real-time use of SMART 2.0 by feeding in a stream
of historical data on events (previously collected). For the first group,
the system presented unlabeled tweets from the Las Vegas shooting on
October 1, 2017 in the Las Vegas area. For the second group, we used
unlabeled tweets from the October 2017 Northern California wildfires.
We used historical event datasets to ensure the existence of sufficient
training relevant samples for a situational awareness scenario.

The domain experts in the first group applied the Safety, Damage,
and Security filters during the iterative training process, resulting in 317
tweets. They trained on the same underlying model for all three filters,
as they considered them semantically related. In total, after relabeling
approximately 200 tweets, they indicated that they could trust the
model to predict accurately and were pleased that the tweets they had
not seen before from the Security filter were labeled correctly. Their
definition for relevancy was tweets containing actionable information.
For instance, they marked tweets containing information about road
closures, blood drive locations, or death counts as relevant. They
labeled data with general comments regarding the shooting, such as
“I hope everyone is safe now...terrible shooting...”, as irrelevant since
they did not provide actionable information. Interestingly, they also
marked tweets that would influence public opinion (and therefore may
cause action) such as those from bots or trolls as relevant since they
still contained actionable information.

The domain experts from the second group followed a similar pro-
cess in which they applied the Safety, Damage, and Security filters,
resulting in 445 tweets, and trained a learning model for relevance.
They found that after training on roughly 67 tweets, the model satisfac-
torily predicted relevancy. As with the first group, these domain experts
labeled tweets as relevant if they contained actionable information.

The domain experts from both groups found SMART 2.0 to be easy
to use and effective in identifying important data. For instance, they
discovered relevant, actionable information after training the model:
specific blood drive locations to aid shooting victims. Notably, the users
mentioned that they felt less the need to relabel data as they progressed
since the system provided more correct labels. They were pleased that
they had the option to view only relevant data, but could see all of
the data regardless of relevancy to avoid potentially missing important
misclassified data, and that the model was responsive to user training.
In addition, they found the relevance percentage bars to be helpful in
determining the tweets that were potentially the most relevant.

One concern the domain experts had was that SMART 2.0 does
not indicate the number of tweets that are predicted as relevant. They
felt this extension could help them infer the occurrence of events or
potential crises. For example, the number of relevant tweets for the
Safety classifier would likely increase significantly during a widespread
disaster. We plan to introduce this feature in the next development
cycle. However, we have added a visualization of estimated model
performance in SMART 2.0 (Fig. 7(g)) to help users ascertain the
reliability of a model’s relevancy predictions.

Overall, the feedback from the domain experts was positive and help-
ful, indicating the system’s practicality and usefulness in facilitating
real-time situational awareness. In addition, they have asked to use
SMART 2.0 in their emergency operations center.

6 DISCUSSION AND FUTURE WORK

Our interactive learning framework and SMART 2.0 integration were
developed with the user in mind, influencing all of our design, com-
putational evaluation, and implementation choices. Our user-centered
model and SMART 2.0 application contribute to both the machine
learning and visual analytics communities. We bridge the two fields
by demonstrating how models can be interactively trained and evalu-
ated while keeping the user in mind, and used to facilitate situational
awareness for real-life, practical use.

SMART 2.0 currently only collects English tweets, although support-
ing non-English languages (one at a time) with our current design (e.g.,
Spanish only) is straightforward since Word2Vec embeddings can be
independently trained on a corpus in the target language [7]. Extending
our system to support multilingual tweets would be a powerful asset,



Fig. 8. Tweets with correctly predicted relevancy from the Purdue vs. Virginia 2019 March Madness game after the user (re)labels 80 tweets.

especially for multilingual users, in amplifying situational awareness
by leveraging relevancy of tweets issued in different languages. How-
ever, the multilingual model performance evaluation and testing is an
open area for research. In addition, determining the specifics of how
a single relevance classifier might be trained with multilingual tweets
requires careful attention. For instance, training iterations with Spanish
tweets should also affect the relevancy of semantically-related English
tweets. Since similar words in different languages likely have different
vector representations (embeddings), multilingual mappings must be
learned or training must be performed differently, such as with parallel
corpora [7]. Multilingual support also requires changes in SMART
2.0’s language-dependent visualizations, such as the topic-modeling
view (Fig. 7(f)). Translation to a unified language or extracting topics
separately for each language are two potential solutions.

The scalability of our framework is a natural concern, especially
since SMART and many deployed real-time visual analytics applica-
tions contain multiple users who require responsive interfaces while
monitoring crisis events. We deliberately designed the framework ar-
chitecture with scalability in mind. As mentioned in Section 3.3.4, we
selected the model and optimal hyperparameters based on training/CPU
time in an effort to maximize the model’s computational speed. Further,
SMART 2.0 filters and views at most 800-900 tweets at a time, although
user-specified filtering (typical in situational awareness scenarios) re-
duces the data to only a few hundred tweets, as demonstrated in Section
5.3. It takes only 2-3 seconds to calculate and retrieve their relevance
labels over the network from the server where the model resides, and
per-iteration training is fast, as established in Section 3.3.5.

Training a model during a particular event, such as a disaster, can
be straightforward due to potentially larger amounts of relevant data.
However, social media data during periods without major events are
likely to contain very few, if any, relevant tweets. As such, if the user
only trains the model on irrelevant data, it will poorly predict relevant
data since it has only be taught what is irrelevant. Although the user
can improve the model through training during a real-life disaster, they
are required to know when and where the disaster occurs to begin
training. This can be problematic if the user wishes to rely on relevancy
predictions to detect hazardous situations.

To accommodate time periods in which relevant data is scarce, we
plan to introduce an interactive feature in which users can provide
example tweets or external resources for specific relevance labels. For
instance, if the user would like to train a Hurricane classifier before a
hurricane event, they could provide a relevant text such as “I’m stranded
by this hurricane. Please help!”. The model could then detect relevant
tweets once the hurricane begins as opposed to requiring user training
during the event. In addition, we plan to provide the user with the

option to visit specific historical data to train existing classifiers, as
done by Bosch et al. [9].

Our interactive learning performed well on target datasets (i.e., wild-
fire, bombing, and crash) as explained in Section 3.3.5. Specifically, it
required the users to label approximately 200 tweets to achieve accept-
able F1 scores. However, tweets are short, and therefore, more research
is required to investigate the suitability of our approach for “general”
classifiers, such as ones that learn to classify relevant data to “safety”.
As safety can be affected by many events or situations, the model may
need additional training that is typical of a targeted dataset.

Finally, although we rigorously optimize and evaluate our machine
learning model, the hyperparameter combinations were only tuned with
the Figure Eight dataset [1]. Since optimal hyperparameters can depend
on the dataset itself, it is possible our model may not be optimally tuned
for different datasets, even though that optimization may be negligible
from a user standpoint. We did use other datasets in our model eval-
uation to show the satisfactory resulting performance (Section 3.3.5).
Given that the Figure Eight dataset classifies generic events as relevant
or irrelevant, as opposed to specific events, we expect that our model
performs well on many different event types.

7 CONCLUSION

We presented a novel interactive framework in which users iteratively
(re)train neural network models with streaming text data in real-time
to improve the process of finding relevant information. We optimized
and evaluated a machine learning model with various datasets related
to situational awareness and adapted the model to learn at interactive
rates. According to evaluation results, our model outperforms state-of-
the-art learning models used in similar classification tasks. Finally, we
integrated our framework with the SMART application and extended
it to SMART 2.0, allowing users to interactively explore, identify,
and refine tweet relevancy to support real-time situational awareness.
Our discussions with multiple first responders who use SMART 2.0
indicated positive feedback and user experience. In particular, their
assessments demonstrated that our interactive framework significantly
improved the time-consuming process of finding crucial information
during real-time events.
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