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Abstract - The objectives of this project are two-fold: 1) 
to use statistical modeling techniques to help a Fortune 
500 paper and packaging company codify what drives 
sales success and 2) to develop a model that can predict 
sales success with a reasonable degree of accuracy. The 
desired long-run result is to enable the company to 
improve both top-line revenue and bottom-line profits by 
increasing sales close rates, shortening sales cycles, and 
decreasing the cost of sales. The research team generated 
several models to predict win propensities for individual 
sales opportunities, choosing the model with the greatest 
predictive power and ability to generate insights to use as 
the backbone for a client tool. To accomplish this, the 
team leveraged structured and unstructured data from 
the company's Salesforce.com customer relationship 
management system. The team experimented with 
several techniques including binomial logit and various 
decision tree methods, including boosting with gradient 
boost and random forest. Individual attributes of 
customers, opportunities, and internal documentation 
methods that have the greatest influence on sales success 
were identified. The best model predicted win propensity 
with an accuracy of 80%, with precision and recall of 
86% and 77%, respectively, which proved to be an 
improvement over current sales forecast accuracy. 

Index Terms - statistical modeling; decision tree; machine 
learning; process improvement 

INTRODUCTION 

The paper and packaging company that provided the 
data for this research has a long history of sales expertise. 
This expertise is captured predominantly in the intuition of 
sales representatives, many of whom have worked in the 
industry for 20 years or more. Intuition is not easy to record 
and disseminate across an entire sales force, however, and 
thus one of the company’s most valuable resources is 
inaccessible to the broader organization. As a result, the 
company tasked this team with extracting the most important 
factors in driving sales success and modeling win 
propensities using data from their customer relationship 
management (CRM) system. 

Most prior work in this space has been performed by 
private companies, both those that have developed 
proprietary technologies for internal use and those that sell 
B2B services related to predictive sales modeling. As a 
result, research in the field is typically unavailable to the 

public. Some examples include Implisit [1]—a company 
recently acquired by Salesforce.com that focuses on data 
automation and predictive modeling—and InsightSquared 
[2], which sells software that includes a capability to 
forecast sales outcomes. 

The academic work that does exist either is related to 
forecasting aggregate sales instead of scoring opportunity-
level propensity, or is based on custom algorithms that fall 
outside the standard tools used by data scientists in industry. 
The earliest relevant publication dates only to 2015, in 
which a joint team from Chinese and US universities 
employed a two-dimensional Hawkes Process model on 
seller-lead interactions to score win propensity [3]. Other 
relevant research has centered around applying highly 
accurate machine learning algorithms based on sales pipeline 
data to integrate the insights they produce into an 
organization’s practices [4], and explaining the output of 
black-box machine learning models [5]. 

Considering the lack of visibility into work predicting 
sales outcome propensity, this research serves to create an 
initial baseline of understanding on the subject. This project 
applies and compares several well-known methods for 
classifying and scoring propensities, a majority of which fall 
into the category of decision tree modeling. 

DATA SOURCE AND PROCESSING 

The data for this project were sourced from the 
company’s Salesforce.com customer relationship 
management system (SFDC). SFDC is a software-as-a-
service application that allows sales teams to record details 
about customer relationships and sales opportunities as they 
move through the sales pipeline. The data included a static 
snapshot of details on sales employees, customer accounts 
and account histories, individual customer opportunities, 
sales representative activities, and contact information. 
Some inputs in the system were automatically generated and 
easily readable by machine. For others, sales representatives 
entered customer information manually, either via restrictive 
forms of entry such as a drop-down list or numeric field, or 
freeform, in a text field or uploaded as an attachment.  

To clean the data and cut out inessential information 
prior to modeling, the team first filtered out all entries 
created before Apr. 1, 2016 when the system was formally 
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launched for the company1. Variables with a high percentage 
of null values were then excluded to ensure a sufficient 
sample size. The remaining variables were further screened 
based on potential importance determined by conversations 
between the team and key company stakeholders. 
Additionally, data exploration resulted in several 
opportunities for feature engineering and custom variables to 
capture potential influence not captured in the default fields. 
The following are several examples of custom fields 
generated: 
1. Fields Completed — count of the number of fields 

completed in one record. 
2. Task Count — count of the number of tasks for the 

customer account associated with an opportunity. 
3. Age-related variables — analyzes the impact from the 

age of opportunities. 
a. Open Time — the duration that an opportunity 

remained open in the system. 
b. Last Action time — the duration from when an 

opportunity was created to the time of last activity 
on that opportunity 

c. Valid Open Time — a Boolean variable that equals 
1 for opportunities with positive Open Time and 0 
for the remaining opportunities. 

 
After a number of iterations between modeling and feature 
engineering, the final master table used in this analysis 
included 15 variables and was built on the opportunity-level. 
Account information related to each customer and custom 
variables from other tables were also merged into this set. 

Each observation on this master table and on previous 
table iterations were considered to be individual sales 
opportunities described by a number of features and 
associated variable values. Opportunities could be 
considered synonymous with sales “deals” and originally 
included both open and closed opportunities before being 
filtered to maintain only closed. Each variable corresponded 
to a filled or calculated field in the SFDC system, 
characterizing the opportunity's duration, type, amount, or 
any other information. 

MODELS AND METHODOLOGY 

The research team employed several well-known 
classification models to extract important features from the 
data, in addition to calculating the win/loss propensity for 
each opportunity record. With the goal of modeling 
probability, the team chose different supervised machine 
learning algorithms that fit these criteria: Logistic 
Regression, Decision Tree, Random Forest, and XGBoost. 
In each of these supervised algorithms, the classifier was 
pre-defined with an iterative variable selection process. A 
classification model was then built with a training set split 
from the master table and used to predict win propensities 

                                                        
1 Prior to this date, portions of the company used the system, 
but it had not been rolled out companywide. 

examined by the actual win or loss of the opportunities in the 
testing set built from the remainder of observations. 

Variable selection was a critical component of this 
project. As previously stated, variables came directly from 
the SFDC system and went through a series of data 
processing steps. The main purpose of this research was to 
interpret features that gave the most useful information in 
terms of win propensity prediction accuracy. Both the 
quality and quantity of variables significantly affected the 
accuracy and efficiency of all algorithms. An important 
consideration about the current data was the widely varying 
quality of variable inputs. This issue created constraints on 
the algorithm-generated selection results. Therefore, the 
variable selection process also involved constant 
communication and validation between the team and 
company. 

The four algorithms used in this research are briefly 
described below: 
● Multiple Logistic Regression — a generalized linear 

model (GLM) that describes the relationship between a 
binary dependent variable and more than one predictor. 

● Decision Tree — a non-parametric algorithm that makes 
sequential, hierarchical decisions about the outcomes 
based on the predictors. 

● Random Forest — an ensemble algorithm that 
constructs a multitude of decision trees and outputs the 
mode of the classes, correcting the overfitting habit of 
decision trees. 

● XGBoost — an implementation of gradient boosted 
decision trees that minimize the loss when producing an 
ensemble of weak decision trees. 

 
The metrics for evaluating the models comprised the 

following: 
1. Accuracy—the percentage of correctly predicted 

opportunities over the total number of opportunities. 
Outputs were given in confusion matrices that 
illustrated a more detailed level of accuracies: 
a. Precision — the percentage of correctly predicted 

won opportunities over the total number of 
predicted won opportunities. 

b. Recall — the percentage of correctly predicted won 
opportunities over the total number of actual won 
opportunities. 

2. Access to variable importance — certain algorithms 
provided information to evaluate the importance of 
variables included in the model. The metric used was 
“percentage increased Mean-squared-error 
(%IncMSE)”, which implied the loss of accuracy if a 
certain variable was missing in the model. 

3. Efficiency — resources used to build the model 
including time, memory, and complexity. 

  



Based on an initial analysis, the tested models produced the 
following results: 
 

TABLE I 
MODEL COMPARISON 

Model Accuracy Precision Recall Run Time 
(seconds) 

Importance 

Logistic 
Regression 
Decision 
Tree 
Random 
Forest 
XGBoost 

 63.78% 
 
49.27% 
 
82.39% 
 
48.85% 

68.80% 
 
52.62% 
 
77.14% 
 
53.11% 

51.84% 
 
39.69% 
 
79.07% 
 
47.51% 

2.35 
 
0.20 
 
1,965.43 
(77.87*) 
95.92 

NO 
 
NO 
 
YES (VARI-
ABLES) 
YES (ALL 
VALUES) 

 
 Accuracy for all models are based on initial runs with 
limited parameter tuning. Additional tuning may have 
improved the accuracy of some models, such as XGBoost 
and decision trees. However, the random forest model not 
only exhibited exceptional accuracy, but also provided 
importances at the variable level. Because of a requirement 
for dummy variables, the XGBoost model output 
importances for every possible value of all categorical 
variables, producing a very high number of importances that 
was much less easy to read and act on for the company. The 
random forest proved best in every metric except run time, 
which was over 30 minutes for the full model. By creating 
individual models at the division level, however, this was 
improved to a manageable 77.87 seconds for all divisions 
combined. Based on these results, random forest was 
selected as the optimal model to provide insights to the 
company. 

A division-level model not only improved model 
performance, but was critically important in deriving 
insights for the company. Within the organization, different 
divisions exhibit significant differences in client profiles, 
processes, and use of the SFDC system. By creating a model 
for each division, recommendations could be tailored to each 
business unit individually. 

Additionally, it was determined that two models should 
be created for each division, one incorporating "meta-
variables"—or variables describing the data itself more than 
the sales opportunity2—and one excluding them. This 
resulted in models with very different accuracies and 
variable importances, but allowed for the isolation of 
variables useful for prediction in contrast to those more 
informative of how the system is used. 

Predictions were made with a conservative win 
threshold of 55% confidence, which limits type 1 errors, or 
                                                        
2 Meta-variables include: Fields Completed (a measure of how thoroughly 
an opportunity owner input data into the system), Open Time (a measure of 
how long an opportunity was open before it was designated "won" or 
"lost"), Last Action Time (a measure of the time between the last action in 
the system and the close date of an opportunity), Tasks Completed (a 
measure of the number of task objects created and attached to an 
opportunity’s account object), and Valid Open Time (a binary variable 
indicating whether the open time was positive or negative: negative open 
times are possible when an opportunity was created after it had already been 
won or lost). 

false positives. Accuracy and importance figures were then 
computed from these predictions and the labels, which 
helped to iteratively select variables and inform insights. 

RESULTS AND ANALYSIS 

 After performing the full division-level random forest 
analysis, the following results were assessed for each 
division: 
  

TABLE II 
RANDOM FOREST MODEL WITH META-VARIABLES 

Division Records Precision Recall Accuracy 
1 
2 
3 
4 
5 
6 
7 
8 
9 

 1,061  
 3,750  
 11,622  
 6,401  
 5,366  
 5,092  
 325  
 2,843  
 4,004 

88.89% 
90.77% 
81.38% 
87.79% 
90.14% 
85.69% 
78.57% 
85.54% 
91.96% 

56.80% 
72.72% 
74.76% 
79.01% 
87.45% 
75.79% 
40.74% 
61.85% 
82.56% 

83.96% 
86.24% 
76.91% 
84.91% 
86.73% 
81.58% 
88.27% 
81.55% 
85.66% 

 
TABLE III 

RANDOM FOREST MODEL WITHOUT META-VARIABLES 
Division Records Precision Recall Accuracy 
1 
2 
3 
4 
5 
6 
7 
8 
9 

 1,061  
 3,750  
 11,622  
 6,401  
 5,366  
 5,092  
 325  
 2,843  
 4,004 

80.00% 
66.94% 
69.82% 
77.82% 
79.58% 
73.11% 
0.00% 
56.78% 
77.44% 

11.83% 
11.16% 
62.35% 
68.54% 
83.98% 
59.20% 
0.00% 
11.67% 
67.53% 

70.94% 
62.56% 
64.77% 
75.94% 
77.45% 
68.74% 
83.33% 
60.73% 
69.68% 

 
The most important insights observable in these results are 
as follows: 
1. The model without meta-variables performed worse, in 

most cases, than the model with meta-variables. More 
detail can be found below as to the significance of these 
meta-variables, but they may demonstrate either the 
effect of system use on opportunity success, or the 
effect of opportunity success on system use. 

2. There was a strong correlation between the size of a 
division's dataset and recall, which was more 
pronounced in the models without meta-variables. 
Smaller datasets provided fewer training samples, and 
thus less information for the model to learn from and 
make predictions with. In this case, smaller divisions 
also tended to be less balanced in terms of true wins vs. 
losses; for example, division 7 only won 16.7% of 
opportunities in our data, and divisions 1 and 2 both 
won under 40%. This imbalance further reduced the 
information available to the model for predicting wins. 

3. Most models were biased toward “loss,” reflecting two 
facts: first, that in making predictions, the threshold for 
a win was 55% certainty, in order to limit type 1 errors; 
and second, that true win percentages tended to be less 
than 50%, broadly. The exceptions to this would be 



divisions 5 and 9, where win percentages exceeded 
50%; these models were likewise biased toward “win.” 

Again, as a result of this analysis, the following variable 
importances were identified for each division and variable: 

 
TABLE IV 

VARIABLE IMPORTANCES BY DIVISION 
Variable Div.  1 Div.  2 Div.  3 Div.  4 Div.  5 
Open Time 
Fields Completed 
Lasty Action Time 
Industry 
Type 
Amount 
Task Count 
Complexity 
Calid Open Time 
Industry Code 2 
Account Tier 
Account Type 
Enterprise Account 
Customer Classification 
Industry Code 1 

37.78 
50.24 
22.49 
5.68 
1.65 
13.98 
5.56 
21.68 
15.29 
5.83 
6.34 
4.17 
4.16 
4.82 
6.21 

50.85 
23.69 
55.29 
0.00 
22.59 
27.24 
5.48 
15.62 
19.85 
0.00 
11.30 
0.00 
11.54 
0.00 
0.00 

133.61 
91.76 
40.23 
52.75 
23.82 
45.70 
47.71 
31.45 
11.92 
53.71 
20.83 
30.11 
13.21 
24.83 
18.12 

68.70 
57.88 
54.81 
86.91 
76.68 
47.63 
56.22 
12.37 
15.75 
6.12 
26.78 
19.06 
11.12 
10.43 
4.50 

64.62 
57.95 
50.24 
41.78 
65.75 
46.09 
45.26 
41.89 
23.20 
23.14 
25.92 
49.35 
28.38 
29.13 
13.45 

 
TABLE IV 

VARIABLE IMPORTANCES BY DIVISION (CONTINUED) 
Variable Div. 6 Div. 7 Div. 8 Div. 9 Average 
Open Time 
Fields Completed 
Lasty Action Time 
Industry 
Type 
Amount 
Task Count 
Complexity 
Calid Open Time 
Industry Code 2 
Account Tier 
Account Type 
Enterprise Account 
Customer Classification 
Industry Code 1 

60.92 
90.50 
57.44 
50.44 
56.31 
45.31 
39.53 
15.43 
15.55 
9.74 
22.02 
12.33 
13.18 
8.89 
8.32 

15.87 
12.14 
16.54 
1.52 
6.91 
-0.70 
13.94 
8.79 
8.18 
-0.35 
9.46 
4.53 
3.55 
2.21 
1.84 

51.59 
122.17 
37.47 
14.02 
10.68 
5.57 
16.59 
27.85 
17.70 
5.28 
6.06 
4.63 
23.27 
4.51 
6.26 

75.66 
39.25 
28.20 
45.24 
23.57 
23.45 
18.71 
12.10 
27.50 
43.14 
16.21 
11.83 
1.14 
7.50 
15.97 

62.18 
60.62 
40.30 
33.15 
32.00 
28.25 
27.67 
20.80 
17.21 
16.29 
16.10 
15.11 
12.17 
10.26 
8.30 

 
These variables' importances were assessed in terms of 

the %IncMSE metric. 
Open Time, on average, contributed 60% MSE when 

removed from the model, the highest average of any one 
variable. Upon inspection of the data itself, it became clear 
that longer open times generally led to a lower likelihood of 
winning. This was logical from two perspectives: first, 
longer open times likely reflected a less pressing need on the 
part of the customer; second, negative open times (of which 
there were many), implied that an opportunity was entered 
into the system after its close. This may have been the result 
of a migration from a legacy system to a new 
implementation, or it may have simply been a laxer 
approach to maintaining data fidelity. Regardless, if entering 
data post hoc, it seemed likely that opportunity owners 
would more readily remember those opportunities they won 
versus those they did not. In terms of usefulness to the 
company, this data could also be visualized to help identify 
which business units and teams need training and provide 
reminders to maintain the input of data. 

Field Completed, on average, fell just beneath Open 
Time with a contribution of 58%. Again, there were two 
ways this could be interpreted: the first was that use of the 
SFDC system was facilitating success in an opportunity; the 
second was that success in an opportunity causes the 
opportunity owner to input more details into the system. It 
would seem that the second explanation was more likely 
than the first, but both are plausible. Causality, in this case, 
would be almost impossible to establish one way or the other 
without further investigation by the company itself. 

Industry, in this case, was the most important non-
"meta-variable" with an average percent increased MSE of 
33, and denotes the industry in which a potential customer 
operates. This field was selected by opportunity owners from 
a list of 40 possible descriptors. This variable was 
tremendously helpful, both in terms of building a predictive 
model and in terms of learning for the customer. A better 
understanding of industry success can help inform 
investment, whether the company chooses to spend less time 
in less fruitful industries, or to spend more on training and 
hiring to shore up strategic areas of weakness. 

Type—indicating whether an opportunity was net new, 
incremental, or a renewal—demonstrated an average 
increase of 32 percent. Intuitively, net new opportunities had 
lower win rates than incremental (or upsell) opportunities, 
which had lower win rates than renewals. It would appear 
logical that existing customers would be much more likely to 
renew than brand new customers would be to onboard a new 
vendor, based on the cost to each of doing so. 

Amount indicated the size of an opportunity, or the 
amount the company could expect a customer to pay, and 
accounted for a 28% increase in MSE. As one might assume, 
larger opportunities are less likely to close than smaller 
opportunities. 

Task Count was calculated by tallying the total number 
of tasks created and linked to an opportunity's parent 
account. This particular variable on average contributed 26% 
MSE. While this count was tallied at the account level, and 
could therefore include tasks undertaken for opportunities 
beyond those being analyzed, it nonetheless was indicative 
of broader engagement with a potential customer. 
Unsurprisingly, a larger task count was associated with a 
higher win rate. 

Complexity referred to the complexity of a product 
being offered to a customer. This variable contributed 22% 
MSE, on average. The more complex products were 
associated with a lower win rate, in this case. 

The other variables used exhibited less importance, and 
were excluded entirely from some models. These include: 

● Valid Open Time, which indicated whether an 
opportunity's Open Time was positive or negative, in 
the form of a 0 for negative and 1 for positive. 

● Industry Code 1 and 2. These were additional industry 
definitions under a separate categorization system than 
“Industry” mentioned above. 



● Account Tier, which indicated the priority assigned to a 
particular customer by the company 

● Account Type, which indicated whether a particular 
opportunity was limited to a single division or spanned 
multiple divisions within the company 

● Enterprise Account, which indicated the size of the 
customer 

● Customer Classification, which indicated the regional 
scope of an opportunity 

While the full set of variables included in the 
importance table above was examined for each division 
initially, variables of low importance were then eliminated 
on a division-by-division basis to produce the most accurate 
model possible. 

CONCLUSION 

This research served as a first step in the development 
of a broader initiative for a Fortune 500 paper and packaging 
company to operationalize predictive modeling on sales 
success. As such, the challenges with any large company 
often include requiring the building of deep local knowledge 
of the data, in addition to corralling a large organization to 
assist with accurate data collection. Despite initial 
inconsistencies in the data, overall accuracy appeared 
promising and indicated further improvements could be 
made with better data quality and quantity, more feature-
related investigation and tuning, or perhaps different 
methods such as neural nets. 

The analysis also uncovered new insights into what is 
important regarding sales success. But new insights are often 
accompanied by new questions: For instance, what kinds of 
data need to be captured to improve the model’s predictive 
capabilities? How does the culture need to change to 
improve data capture? This cascade is to be expected, as the 
broader project lends itself to being a heavily iterative 
process. 

There may appear to be a seemingly infinite pool of 
potential next steps to take in this case. With this in mind, 
there are a few the team would recommend as the most 
prudent to consider. Currently, the company could feasibly 
use the non-meta-variable model to attempt prediction on 
opportunities in progress for those divisions where accuracy 
is adequate. To better achieve the objective of predicting 
open opportunities, it would be prudent to capture and model 
how opportunity fields change over time, perhaps via 
periodic snapshots. This way, the company would be able to 
make predictions at different stages in the opportunity 
lifecycle. 

Another important application of these kinds of 
prediction models is to assist in determining where to invest 
sales time and resources for business planning optimization.  
Predictions from accurate models are also worth rolling up 
into aggregate sales forecasts and adjusting existing 
“bottom-up” methods. 

Before these applications would be addressed however, 
data ops resources would be required to perform a number of 

critical tasks: continue building and tuning the model for 
better accuracy, establish a cadence around maintaining the 
models and incorporating new kinds of information, and 
connecting with the other business units to understand 
strategic priorities for operationalization. 
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